English
Language : 

PIC18F6520-I Datasheet, PDF (213/380 Pages) Micrel Semiconductor – 64/80-Pin High-Performance, 256 Kbit to 1 Mbit Enhanced Flash Microcontrollers with A/D
PIC18F6520/8520/6620/8620/6720/8720
18.4 USART Synchronous Slave Mode
Synchronous Slave mode differs from the Master mode
in the fact that the shift clock is supplied externally at
the TXx pin (RC6/TX1/CK1 or RG1/TX2/CK2), instead
of being supplied internally in Master mode. TRISC<6>
must be set for this mode. This allows the device to
transfer or receive data while in Sleep mode. Slave
mode is entered by clearing bit CSRC (TXSTAx<7>).
18.4.1 USART SYNCHRONOUS SLAVE
TRANSMIT
The operation of the Synchronous Master and Slave
modes are identical, except in the case of the Sleep
mode.
If two words are written to the TXREG and then the
SLEEP instruction is executed, the following will occur:
a) The first word will immediately transfer to the
TSR register and transmit.
b) The second word will remain in TXREG register.
c) Flag bit TXxIF will not be set.
d) When the first word has been shifted out of TSR,
the TXREGx register will transfer the second
word to the TSR and flag bit TXxIF will now be
set.
e) If enable bit TXxIE is set, the interrupt will wake
the chip from Sleep. If the global interrupt is
enabled, the program will branch to the interrupt
vector.
To set up a Synchronous Slave Transmission:
1. Enable the synchronous slave serial port by
setting bits SYNC and SPEN and clearing bit
CSRC.
2. Clear bits CREN and SREN.
3. If interrupts are desired, set enable bit TXxIE.
4. If 9-bit transmission is desired, set bit TX9.
5. Enable the transmission by setting enable bit
TXEN.
6. If 9-bit transmission is selected, the ninth bit
should be loaded in bit TX9D.
7. Start transmission by loading data to the
TXREGx register.
8. If using interrupts, ensure that the GIE and PEIE
bits in the INTCON register (INTCON<7:6>) are
set.
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION
Name
Bit 7
Bit 6
Bit 5 Bit 4 Bit 3
Bit 2
Bit 1
Bit 0
Value on
POR, BOR
Value on
all other
Resets
INTCON
GIE/
GIEH
PEIE/ TMR0IE INT0IE
GIEL
RBIE
TMR0IF INT0IF
RBIF 0000 0000 0000 0000
PIR1
PSPIF ADIF RC1IF TX1IF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000
PIE1
PSPIE ADIE RC1IE TX1IE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000
IPR1
PSPIP ADIP RC1IP TX1IP SSPIP CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111
PIR3
—
—
RC2IF TX2IF TMR4IF CCP5IF CCP4IF CCP3IF --00 0000 --00 0000
PIE3
—
—
RC2IE TX2IE TMR4IE CCP5IE CCP4IE CCP3IE --00 0000 --00 0000
IPR3
—
—
RC2IP
RCSTAx(1) SPEN
RX9
SREN
TXREGx(1) USART Transmit Register
TXSTAx(1) CSRC
TX9
TXEN
SPBRGx(1) Baud Rate Generator Register
TX2IP TMR4IP CCP5IP
CREN ADDEN FERR
SYNC
—
BRGH
CCP4IP
OERR
TRMT
CCP3IP
RX9D
TX9D
--11 1111
0000 000x
0000 0000
0000 -010
0000 0000
--11 1111
0000 000x
0000 0000
0000 -010
0000 0000
Legend:
Note 1:
x = unknown, – = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.
Register names generically refer to both of the identically named registers for the two USART modules, where ‘x’
indicates the particular module. Bit names and Reset values are identical between modules.
 2004 Microchip Technology Inc.
DS39609B-page 211