English
Language : 

PIC18F2682 Datasheet, PDF (180/484 Pages) Microchip Technology – 28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
PIC18F2682/2685/4682/4685
16.4.4 HALF-BRIDGE MODE
In the Half-Bridge Output mode, two pins are used as
outputs to drive push-pull loads. The PWM output
signal is output on the P1A pin, while the complemen-
tary PWM output signal is output on the P1B pin
(Figure 16-4). This mode can be used for half-bridge
applications, as shown in Figure 16-5, or for full-bridge
applications where four power switches are being
modulated with two PWM signals.
In Half-Bridge Output mode, the programmable dead-
band delay can be used to prevent shoot-through
current in half-bridge power devices. The value of bits,
PDC6:PDC0, sets the number of instruction cycles
before the output is driven active. If the value is greater
than the duty cycle, the corresponding output remains
inactive during the entire cycle. See Section 16.4.6
“Programmable Dead-Band Delay” for more details
of the dead-band delay operations.
Since the P1A and P1B outputs are multiplexed with
the PORTD<4> and PORTD<5> data latches, the
TRISD<4> and TRISD<5> bits must be cleared to
configure P1A and P1B as outputs.
FIGURE 16-4:
HALF-BRIDGE PWM
OUTPUT
Period
Period
P1A(2)
Duty Cycle
td
td
P1B(2)
(1)
(1)
(1)
td = Dead-Band Delay
Note 1: At this time, the TMR2 register is equal to the
PR2 register.
2: Output signals are shown as active-high.
FIGURE 16-5:
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS
Standard Half-Bridge Circuit (“Push-Pull”)
V+
PIC18F268X/468X FET
Driver
+
P1A
V
-
FET
Driver
P1B
Load
+
V
-
Half-Bridge Output Driving a Full-Bridge Circuit
PIC18F268X/468X
P1A
P1B
FET
Driver
FET
Driver
V-
V+
Load
FET
Driver
FET
Driver
V-
DS39761B-page 178
Preliminary
© 2007 Microchip Technology Inc.