English
Language : 

MC908GR8CDWE Datasheet, PDF (239/408 Pages) Freescale Semiconductor, Inc – M68HC08 Microcontrollers
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
Functional Description
continuously loads break characters into the transmit shift register. After
software clears the SBK bit, the shift register finishes transmitting the
last break character and then transmits at least one logic 1. The
automatic logic 1 at the end of a break character guarantees the
recognition of the start bit of the next character.
The SCI recognizes a break character when a start bit is followed by
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.
Receiving a break character has these effects on SCI registers:
• Sets the framing error bit (FE) in SCS1
• Sets the SCI receiver full bit (SCRF) in SCS1
• Clears the SCI data register (SCDR)
• Clears the R8 bit in SCC3
• Sets the break flag bit (BKF) in SCS2
• May set the overrun (OR), noise flag (NF), parity error (PE), or
reception in progress flag (RPF) bits
18.5.2.4 Idle Characters
An idle character contains all logic 1s and has no start, stop, or parity bit.
Idle character length depends on the M bit in SCC1. The preamble is a
synchronizing idle character that begins every transmission.
If the TE bit is cleared during a transmission, the PE2/TxD pin becomes
idle after completion of the transmission in progress. Clearing and then
setting the TE bit during a transmission queues an idle character to be
sent after the character currently being transmitted.
NOTE:
When queueing an idle character, return the TE bit to logic 1 before the
stop bit of the current character shifts out to the TxD pin. Setting TE after
the stop bit appears on TxD causes data previously written to the SCDR
to be lost.
Toggle the TE bit for a queued idle character when the SCTE bit
becomes set and just before writing the next byte to the SCDR.
MC68HC908GR8 — Rev 4.0
MOTOROLA
Serial Communications Interface (SCI)
For More Information On This Product,
Go to: www.freescale.com
Technical Data
239