English
Language : 

CC2430 Datasheet, PDF (129/212 Pages) Texas Instruments – A True System-on-Chip solution for 2.4 GHz IEEE 802.15.4 / ZigBee-TM
CC2430
Peripherals : ADC
It is also possible to select a voltage
corresponding to AVDD_SOC/3 as an ADC
input. This input allows the implementation of
e.g. a battery monitor in applications where
this feature is required. Alle these input
configurations are controlled by the register
ADCCON2.SCH
13.10.2.3 ADC conversion sequences
The ADC can perform a sequence of
conversions, and move the results to memory
(through DMA) without any interaction from the
CPU.
The conversion sequence can be influenced
with the ADCCFG register (see section 13.4.6.6
on page 81) in that the eight analog inputs to
the ADC comes from IO pins that are not
necessarily programmed to be analog inputs. If
a channel should normally be part of a
sequence, but the corresponding analog input
is disabled in the ADCCFG, then that channel
will be skipped. For channels 8 to 12, both
input pins must be enabled.
The ADCCON2.SCH register bits are used to
define an ADC conversion sequence, from the
ADC inputs. A conversion sequence will
contain a conversion from each channel from 0
up to and including the channel number
programmed in ADCCON2.SCH when
ADCCON2.SCH is set to a value less than 8.
The single-ended inputs AIN0 to AIN7 are
represented by channel numbers 0 to 7 in
ADCCON2.SCH. Channel numbers 8 to 11
represent the differential inputs consisting of
AIN0-AIN1, AIN2-AIN3, AIN4-AIN5 and AIN6-
AIN7. Channel numbers 12 to 15 represent
GND, internal voltage reference, temperature
sensor and AVDD_SOC/3, respectively.
When ADCCON2.SCH is set to a value between
8 and 12, the sequence will start at channel 8.
For even higher settings, only single
conversions are performed. In addition to this
sequence of conversions, the ADC can be
programmed to perform a single conversion
from any channel as soon as the sequence
has completed. This is called an extra
conversion and is controlled with the ADCCON3
register.
13.10.2.4 ADC Operating Modes
This section describes the operating modes
and initialization of conversions.
The ADC has three control registers:
ADCCON1, ADCCON2 and ADCCON3. These
registers are used to configure the ADC and to
report status.
The ADCCON1.EOC bit is a status bit that is set
high when a conversion ends and cleared
when ADCH is read.
The ADCCON1.ST bit is used to start a
sequence of conversions. A sequence will start
when this bit is set high, ADCCON1.STSEL is
11 and no conversion is currently running.
When the sequence is completed, this bit is
automatically cleared.
The ADCCON1.STSEL bits select which event
that will start a new sequence of conversions.
The options which can be selected are rising
edge on external pin P2_0, end of previous
sequence, a Timer 1 channel 0 compare event
or ADCCON1.ST is 1.
The ADCCON2 register controls how the
sequence of conversions is performed.
ADCCON2.SREF is used to select the
reference voltage. The reference voltage
should only be changed when no conversion is
running.
The ADCCON2.SDIV bits select the decimation
rate (and thereby also the resolution and time
required to complete a conversion and sample
rate). The decimation rate should only be
changed when no conversion is running.
The last channel of a sequence is selected
with the ADCCON2.SCH bits.
The ADCCON3 register controls the channel
number, reference voltage and decimation rate
for the extra conversion. The extra conversion
will take place immediately after the ADCCON3
register is updated. The coding of the register
bits is exactly as for ADCCON2.
13.10.2.5 ADC Conversion Results
The digital conversion result is represented in
two's complement form. For single ended
configurations the result is always positive.
This is because the result is the difference
between ground and input signal which is
always possivitely signed (Vconv=Vinp-Vinn,
CC2430 Data Sheet (rev. 2.1) SWRS036F
Page 129 of 211