English
Language : 

LM3S1G21 Datasheet, PDF (605/955 Pages) Texas Instruments – Stellaris® LM3S1G21 Microcontroller
Stellaris® LM3S1G21 Microcontroller
13.3.2
In this implementation, each FIFO entry is a 32-bit word, with the lower 12 bits containing the
conversion result.
Table 13-3. Samples and FIFO Depth of Sequencers
Sequencer
SS3
SS2
SS1
SS0
Number of Samples
1
4
4
8
Depth of FIFO
1
4
4
8
For a given sample sequence, each sample is defined by bit fields in the ADC Sample Sequence
Input Multiplexer Select (ADCSSMUXn) and ADC Sample Sequence Control (ADCSSCTLn)
registers, where "n" corresponds to the sequence number. The ADCSSMUXn fields select the input
pin, while the ADCSSCTLn fields contain the sample control bits corresponding to parameters such
as temperature sensor selection, interrupt enable, end of sequence, and differential input mode.
Sample sequencers are enabled by setting the respective ASENn bit in the ADC Active Sample
Sequencer (ADCACTSS) register and should be configured before being enabled. Sampling is
then initiated by setting the SSn bit in the ADC Processor Sample Sequence Initiate (ADCPSSI)
register.
When configuring a sample sequence, multiple uses of the same input pin within the same sequence
are allowed. In the ADCSSCTLn register, the IEn bits can be set for any combination of samples,
allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END
bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END
bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete
execution of the sample sequence after the fifth sample.
After a sample sequence completes execution, the result data can be retrieved from the ADC
Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers
that read a single address to "pop" result data. For software debug purposes, the positions of the
FIFO head and tail pointers are visible in the ADC Sample Sequence FIFO Status (ADCSSFSTATn)
registers along with FULL and EMPTY status flags. If a write is attempted when the FIFO is full, the
write does not occur and an overflow condition is indicated. Overflow and underflow conditions are
monitored using the ADCOSTAT and ADCUSTAT registers.
Module Control
Outside of the sample sequencers, the remainder of the control logic is responsible for tasks such
as:
■ Interrupt generation
■ DMA operation
■ Sequence prioritization
■ Trigger configuration
■ Comparator configuration
■ External voltage reference
■ Sample phase control
January 22, 2012
605
Texas Instruments-Production Data