English
Language : 

PIC18F67J11T-I Datasheet, PDF (57/466 Pages) Microchip Technology – 64/80-Pin, High-Performance, 1-Mbit Flash Microcontrollers
PIC18F87J11 FAMILY
5.2 Master Clear (MCLR)
The MCLR pin provides a method for triggering a hard
external Reset of the device. A Reset is generated by
holding the pin low. PIC18 extended microcontroller
devices have a noise filter in the MCLR Reset path
which detects and ignores small pulses.
The MCLR pin is not driven low by any internal Resets,
including the WDT.
5.3 Power-on Reset (POR)
A Power-on Reset condition is generated on-chip
whenever VDD rises above a certain threshold. This
allows the device to start in the initialized state when
VDD is adequate for operation.
To take advantage of the POR circuitry, tie the MCLR
pin through a resistor (1 k to 10 k) to VDD. This will
eliminate external RC components usually needed to
create a Power-on Reset delay. A minimum rise rate for
VDD is specified (Parameter D004). For a slow rise
time, see Figure 5-2.
When the device starts normal operation (i.e., exits the
Reset condition), device operating parameters
(voltage, frequency, temperature, etc.) must be met to
ensure operation. If these conditions are not met, the
device must be held in Reset until the operating
conditions are met.
Power-on Reset events are captured by the POR bit
(RCON<1>). The state of the bit is set to ‘0’ whenever
a Power-on Reset occurs; it does not change for any
other Reset event. POR is not reset to ‘1’ by any
hardware event. To capture multiple events, the user
manually resets the bit to ‘1’ in software following any
Power-on Reset.
5.4 Brown-out Reset (BOR)
The PIC18F87J11 family of devices incorporates a
simple Brown-out Reset function when the internal reg-
ulator is enabled (ENVREG pin is tied to VDD). Any
drop of VDD below VBOR (Parameter D005) for greater
than time, TBOR, will reset the device. A Reset may or
may not occur if VDD falls below VBOR for less than
TBOR. The chip will remain in Brown-out Reset until
VDD rises above VBOR.
Once a Brown-out Reset has occurred, the Power-up
Timer will keep the chip in Reset for TPWRT
(Parameter 33). If VDD drops below VBOR while the
Power-up Timer is running, the chip will go back into a
Brown-out Reset and the Power-up Timer will be
initialized. Once VDD rises above VBOR, the Power-up
Timer will execute the additional time delay.
FIGURE 5-2:
EXTERNAL POWER-ON
RESET CIRCUIT (FOR
SLOW VDD POWER-UP)
VDD VDD
D
R
C
R1
MCLR
PIC18F87J11
Note 1:
2:
3:
External Power-on Reset circuit is required
only if the VDD power-up slope is too slow.
The diode, D, helps discharge the capacitor
quickly when VDD powers down.
R < 40 k is recommended to make sure that
the voltage drop across R does not violate
the device’s electrical specification.
R1  1 k will limit any current flowing into
MCLR from external capacitor, C, in the event
of MCLR/VPP pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS).
5.4.1 DETECTING BOR
The BOR bit always resets to ‘0’ on any Brown-out
Reset or Power-on Reset event. This makes it difficult
to determine if a Brown-out Reset event has occurred
just by reading the state of BOR alone. A more reliable
method is to simultaneously check the state of both
POR and BOR. This assumes that the POR bit is reset
to ‘1’ in software immediately after any Power-on Reset
event. If BOR is ‘0’ while POR is ‘1’, it can be reliably
assumed that a Brown-out Reset event has occurred.
If the voltage regulator is disabled, Brown-out Reset
functionality is disabled. In this case, the BOR bit
cannot be used to determine a Brown-out Reset event.
The BOR bit is still cleared by a Power-on Reset event.
5.5 Configuration Mismatch (CM)
The Configuration Mismatch (CM) Reset is designed to
detect and attempt to recover from random, memory
corrupting events. These include Electrostatic Discharge
(ESD) events, which can cause widespread, single bit
changes throughout the device and result in catastrophic
failure.
In PIC18FXXJ Flash devices, the device Configuration
registers (located in the configuration memory space)
are continuously monitored during operation by
comparing their values to complimentary shadow reg-
isters. If a mismatch is detected between the two sets
of registers, a CM Reset automatically occurs. These
events are captured by the CM bit (RCON<5>). The
state of the bit is set to ‘0’ whenever a CM event occurs;
it does not change for any other Reset event.
 2007-2012 Microchip Technology Inc.
DS39778E-page 57