English
Language : 

MC68HC908LJ12 Datasheet, PDF (246/413 Pages) Freescale Semiconductor, Inc – 8-bit microcontroller units
Infrared Serial Communications Interface Module (IRSCI)
13.7.3.7 Receiver Interrupts
The following sources can generate CPU interrupt requests from the SCI
receiver:
• SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that
the receive shift register has transferred a character to the SCDR.
SCRF can generate a receiver interrupt request. Setting the SCI
receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit
to generate receiver CPU interrupts.
• Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11
consecutive logic 1s shifted in from the RxD pin. The idle line
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate
CPU interrupt requests.
13.7.3.8 Error Interrupts
The following receiver error flags in SCS1 can generate CPU interrupt
requests:
• Receiver overrun (OR) — The OR bit indicates that the receive
shift register shifted in a new character before the previous
character was read from the SCDR. The previous character
remains in the SCDR, and the new character is lost. The overrun
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI
error CPU interrupt requests.
• Noise flag (NF) — The NF bit is set when the SCI detects noise on
incoming data or break characters, including start, data, and stop
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables
NF to generate SCI error CPU interrupt requests.
• Framing error (FE) — The FE bit in SCS1 is set when a logic 0
occurs where the receiver expects a stop bit. The framing error
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI
error CPU interrupt requests.
• Parity error (PE) — The PE bit in SCS1 is set when the SCI
detects a parity error in incoming data. The parity error interrupt
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU
interrupt requests.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)
Technical Data
247