English
Language : 

LM3S5737 Datasheet, PDF (74/833 Pages) Texas Instruments – Stellaris® LM3S5737 Microcontroller
The Cortex-M3 Processor
2.4.5
Memory barrier instructions can be used in the following situations:
■ MPU programming
– If the MPU settings are changed and the change must be effective on the very next instruction,
use a DSB instruction to ensure the effect of the MPU takes place immediately at the end of
context switching.
– Use an ISB instruction to ensure the new MPU setting takes effect immediately after
programming the MPU region or regions, if the MPU configuration code was accessed using
a branch or call. If the MPU configuration code is entered using exception mechanisms, then
an ISB instruction is not required.
■ Vector table
If the program changes an entry in the vector table and then enables the corresponding exception,
use a DMB instruction between the operations. The DMB instruction ensures that if the exception
is taken immediately after being enabled, the processor uses the new exception vector.
■ Self-modifying code
If a program contains self-modifying code, use an ISB instruction immediately after the code
modification in the program. The ISB instruction ensures subsequent instruction execution uses
the updated program.
■ Memory map switching
If the system contains a memory map switching mechanism, use a DSB instruction after switching
the memory map in the program. The DSB instruction ensures subsequent instruction execution
uses the updated memory map.
■ Dynamic exception priority change
When an exception priority has to change when the exception is pending or active, use DSB
instructions after the change. The change then takes effect on completion of the DSB instruction.
Memory accesses to Strongly Ordered memory, such as the System Control Block, do not require
the use of DMB instructions.
For more information on the memory barrier instructions, see the Cortex™-M3/M4 Instruction Set
Technical User's Manual.
Bit-Banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.
The bit-band regions occupy the lowest 1 MB of the SRAM and peripheral memory regions. Accesses
to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band region, as shown in Table
2-6 on page 75. Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral bit-band
region, as shown in Table 2-7 on page 75. For the specific address range of the bit-band regions,
see Table 2-4 on page 70.
Note: A word access to the SRAM or the peripheral bit-band alias region maps to a single bit in
the SRAM or peripheral bit-band region.
A word access to a bit band address results in a word access to the underlying memory,
and similarly for halfword and byte accesses. This allows bit band accesses to match the
access requirements of the underlying peripheral.
74
November 17, 2011
Texas Instruments-Production Data