English
Language : 

CC2510F16 Datasheet, PDF (115/244 Pages) Texas Instruments – Low-Power SoC (System-on-Chip) with MCU, Memory, 2.4 GHz RF Transceiver, and USB Controller
set together with IEN1.T1EN. The interrupt
mask bits are T1CCTL0.IM, T1CCTL1.IM,
T1CCTL2.IM, and TIMIF.OVFIM. Note that
enabling an interrupt mask bit will generate a
new interrupt request if the corresponding
interrupt flag is set.
When the timer is used in Free-running Mode
or Modulo Mode the interrupt flags are set as
follows:
• T1CTL.CH0IF, T1CTL.CH1IF, and
T1CTL.CH2IF
are set on
compare/capture event
• T1CTL.OVFIF is set when counter
reaches terminal count value (overflow)
When the timer is used in Up/Down Mode the
interrupt flags are set as follows:
In compare mode:
• T1CTL.CH0IF and T1CTL.OVFIF
are set when counter turns around on
zero
• T1CTL.CH1IF and T1CTL.CH2IF
are set on compare event
In capture mode:
• T1CTL.OVFIF is set when counter
turns around on zero
• T1CTL.CH0IF, T1CTL.CH1IF, and
T1CTL.CH2IF are set on capture event
I addition, the CPU interrupt flag, IRCON.T1IF
will be asserted if the channel n interrupt mask
bit (T1CCTLn.IM) is set to 1.
12.6.7 Timer 1 DMA Triggers
There are three DMA triggers associated with
Timer 1, one for each channel. These are DMA
triggers T1_CH0, T1_CH1 and T1_CH2, which
are generated on timer compare events as
follows:
• T1_CH0 - Channel 0 compare
• T1_CH1 - Channel 0 compare
• T1_CH2 - Channel 0 compare
CC2510Fx / CC2511Fx
12.6.8 DSM Mode
Timer 1 also contains a 1-bit Delta-Sigma
Modulator (DSM) of second order that can be
used to produce a mono audio output PWM
signal. The DSM removes the need for high
order external filtering required when using
regular PWM mode.
The DSM operates at a fixed speed of either
1/4 or 1/8 of the timer tick speed set by
CLKCON.TICKSPD. The DSM speed is set by
T1CCTL1.MODE. The input samples are
updated at a configurable sampling rate set by
the terminal count value T1CC0.
An interpolator is used to match the sampling
rate with the DSM update rate. This
interpolator is of first order with a scaling
compensation. The scaling compensation is
due to variable gain defined by the difference
in sampling speed and DSM speed. This
interpolation mechanism can be disabled by
setting
T1CCTL1.CAP=10
or
T1CCTL1.CAP=11, thus using a zeroth order
interpolator.
In addition to the interpolator, a shaper can be
used to account for differences in rise/fall times
in the output signal. Also the shaper is
enabled/disabled using the two CAP bits in the
T1CCTL1 register. This shaper ensures a
rising and a falling edge per bit and will thus
limit the output swing to 1/8 to 7/8 of I/O VDD
when the DSM operates at 1/8 of the timer tick
speed or 1/4 to 3/4 of I/O VDD when the DSM
operates at 1/4 of the timer tick speed.
The DSM is used as in PWM mode where the
terminal count value T1CC0 defines the
period/sampling rate. The DSM can not use
the Timer 1 prescaler to further slow down the
period.
Timer 1 must be configured to operate in
modulo mode (T1CTL.MODE=10) and channel
0 must be configured to compare mode
(T1CCTL0.MODE=1). The terminal count
value T1CC0, held in the registers
T1CC0H:T1CC0L, defines the sample rate.
Table 53 shows some T1CC0 settings for
different
sample
rates
(CLKCON.TICKSPD=000).
SWRS055F
Page 115 of 241