English
Language : 

PIC16F753 Datasheet, PDF (83/238 Pages) Microchip Technology – 14/16-Pin, Flash-Based 8-Bit CMOS Microcontrollers
PIC16F753/HV753
10.2 Compare Mode
Compare mode makes use of the 16-bit Timer1
resource. The 16-bit value of the CCPR1H:CCPR1L
register pair is constantly compared against the 16-bit
value of the TMR1H:TMR1L register pair. When a
match occurs, one of the following events can occur:
• Toggle the CCP1 output
• Set the CCP1 output
• Clear the CCP1 output
• Generate a Special Event Trigger
• Generate a Software Interrupt
The action on the pin is based on the value of the
CCP1M<3:0> control bits of the CCP1CON register. At
the same time, the interrupt flag CCP1IF bit is set.
All Compare modes can generate an interrupt.
Figure 10-2 shows a simplified diagram of the
Compare operation.
FIGURE 10-2:
COMPARE MODE
OPERATION BLOCK
DIAGRAM
CCP1M<3:0>
Mode Select
CCP1
Pin
Set CCP1IF Interrupt Flag
4 (PIR2)
CCPR1H CCPR1L
Q S Output
R Logic
Match
Comparator
TRIS
Output Enable
TMR1H TMR1L
Special Event Trigger
10.2.1 CCP1 PIN CONFIGURATION
The user must configure the CCP1 pin as an output by
clearing the associated TRIS bit.
Note:
Clearing the CCP1CON register will force
the CCP1 compare output latch to the
default low level. This is not the PORT I/O
data latch.
10.2.2 TIMER1 MODE RESOURCE
In Compare mode, Timer1 must be running in either
Timer mode or Synchronized Counter mode. The
compare operation may not work in Asynchronous
Counter mode.
See Section 7.0 “Timer1 Module with Gate Control”
for more information on configuring Timer1.
Note:
Clocking Timer1 from the system clock
(FOSC) should not be used in Compare
mode. In order for Compare mode to
recognize the trigger event on the CCP1
pin, TImer1 must be clocked from the
instruction clock (FOSC/4) or from an
external clock source.
10.2.3 SOFTWARE INTERRUPT MODE
When Generate Software Interrupt mode is chosen
(CCP1M<3:0> = 1010), the CCP1 module does not
assert control of the CCP1 pin (see the CCP1CON
register).
10.2.4 SPECIAL EVENT TRIGGER
When Special Event Trigger mode is chosen
(CCP1M<3:0> = 1011), the CCP1 module does the
following:
• Resets Timer1
• Starts an ADC conversion if ADC is enabled
The CCP1 module does not assert control of the CCP1
pin in this mode.
The Special Event Trigger output of the CCP1 occurs
immediately upon a match between the TMR1H,
TMR1L register pair and the CCPR1H, CCPR1L regis-
ter pair. The TMR1H, TMR1L register pair is not reset
until the next rising edge of the Timer1 clock. The
Special Event Trigger output starts an A/D conversion
(if the A/D module is enabled). This allows the
CCPR1H, CCPR1L register pair to effectively provide a
16-bit programmable period register for Timer1.
TABLE 10-2: SPECIAL EVENT TRIGGER
Device
CCP1
PIC16F753
PIC16HV753
CCP1
Refer to Section 12.0 “Analog-to-Digital Converter
(ADC) Module” for more information.
Note 1: The Special Event Trigger from the CCP
module does not set interrupt flag bit
TMR1IF of the PIR1 register.
2: Removing the match condition by
changing the contents of the CCPR1H
and CCPR1L register pair, between the
clock edge that generates the Special
Event Trigger and the clock edge that
generates the Timer1 Reset, will
preclude the Reset from occurring.
 2013 Microchip Technology Inc.
Preliminary
DS40001709A-page 83