English
Language : 

MC908AB32CFUE Datasheet, PDF (77/392 Pages) Freescale Semiconductor, Inc – Microcontrollers
EEPROM
NOTE:
A. Setting the EELAT bit configures the address and data buses to latch
data for erasing the array. Only valid EEPROM addresses will be
latched. If EELAT is set, other writes to the EECR will be allowed after a
valid EEPROM write.
B. If more than one valid EEPROM writes occur, the last address and
data will be latched, overriding the previous address and data. Once
written data to the desired address, do not read EEPROM locations
other than the written location. (Reading an EEPROM location returns
the latched data, and causes the read address to be latched.)
EENVR is not affected by block or bulk erase.
C. The EEPGM bit cannot be set if the EELAT bit is cleared or a non-
valid EEPROM address is latched. This is to ensure proper
programming sequence. Once EEPGM is set, do not read any EEPROM
locations, otherwise the current erase cycle will be unsuccessful. When
EEPGM is set, the erase mode cannot be changed, and the on-board
erasing sequence will be activated.
D. The delay time for the EEPGM bit to be cleared in AUTO mode is less
than tEBYTE / tEBLOCK / tEBULK. However, on other MCUs, this delay time
may be different. For forward compatibility, software should not make
any dependency on this delay time.
E. Any attempt to clear both EEPGM and EELAT bits with a single
instruction will only clear EEPGM. This is to allow time for removal of
high voltage from the EEPROM array.
5.10 Low Power Modes
The WAIT and STOP instructions can put the MCU in low power
consumption standby modes.
5.10.1 Wait Mode
The WAIT instruction does not affect the EEPROM. It is possible to start
the program or erase sequence on the EEPROM and put the MCU in
wait mode.
MC68HC908AB32 — Rev. 1.1
Freescale Semiconductor
EEPROM
Technical Data
77