English
Language : 

MC9S08GT16A Datasheet, PDF (232/300 Pages) Freescale Semiconductor, Inc – Microcontrollers
Analog-to-Digital Converter (S08ATDV3)
ES = 2N * (∆VSAMP / (VREFH – VREFL)) * (CAIN / (CAIN + CAS))
Eqn. 14-3
In the case of a 0.1 µF CAS, a worst case sampling error of 0.5 LSB is achieved regardless of RAS.
However, in the case of repeated conversions at a rate of fSAMP, RAS must re-charge CAS. This recharge is
continuous and controlled only by RAS (not RAIN), and reduces the overall sampling error to:
+
(∆VSAMP
/
(VREFH
ES = 2N * {(∆VAIN / (VREFH – VREFL))
- VREFL)) * Min[(CAIN / (CAIN + CAS)),
* e−(1 / (fSAMP * RAS *
e−(1 / (fATDCLK * (RAS
CAS )
+ RAIN)
*
CAIN
)]}
Eqn. 14-4
This is a worst case sampling error which does not account for RAS recharging the combination of CAS
and CAIN during the sample window. It does illustrate that high values of RAS (>10 kΩ) are possible if a
large CAS is used and sufficient time to recharge CAS is provided between samples. In order to achieve
accuracy specified under the worst case conditions of maximum ∆VSAMP and minimum CAS, RAS must
be less than the maximum value of 10 kΩ. The maximum value of 10 kΩ for RAS is to ensure low sampling
error in the worst case condition of maximum ∆VSAMP and minimum CAS.
14.4.3 Analog Input Multiplexer
The analog input multiplexer selects one of the eight external analog input channels to generate an analog
sample. The analog input multiplexer includes negative stress protection circuitry which prevents
cross-talk between channels when the applied input potentials are within specification. Only analog input
signals within the potential range of VREFL to VREFH (ATD reference potentials) will result in valid ATD
conversions.
14.4.4 ATD Module Accuracy Definitions
Figure 14-11 illustrates an ideal ATD transfer function. The horizontal axis represents the ATD input
voltage in millivolts. The vertical axis the conversion result code. The ATD is specified with the following
figures of merit:
• Number of bits (N) — The number of bits in the digitized output
• Resolution (LSB) — The resolution of the ATD is the step size of the ideal transfer function. This
is also referred to as the ideal code width, or the difference between the transition voltages to a
given code and to the next code. This unit, known as 1LSB, is equal to
1LSB = (VREFH – VREFL) / 2N
Eqn. 14-5
• Inherent quantization error (EQ) — This is the error caused by the division of the perfect ideal
straight-line transfer function into the quantized ideal transfer function with 2N steps. This error is
± 1/2 LSB.
• Differential non-linearity (DNL) — This is the difference between the current code width and the
ideal code width (1LSB). The current code width is the difference in the transition voltages to the
current code and to the next code. A negative DNL means the transfer function spends less time at
the current code than ideal; a positive DNL, more. The DNL cannot be less than –1.0; a DNL of
greater than 1.0 reduces the effective number of bits by 1.
• Integral non-linearity (INL) — This is the difference between the transition voltage to the current
code and the transition to the corresponding code on the adjusted transfer curve. INL is a measure
MC9S08GT16A/GT8A Data Sheet, Rev. 1
232
Freescale Semiconductor