English
Language : 

PD488588FF Datasheet, PDF (29/79 Pages) Elpida Memory – 288M bits Direct Rambus DRAM for High Performance Solution
µPD488588FF-C80-40
16. Interleaved Write - Example
Figure 16-1 shows an example of an interleaved write transaction. Transactions similar to the one presented in
Figure 14-1 are directed to non-adjacent banks of a single RDRAM. This allows a new transaction to be issued once
every tRR interval rather than once every tRC interval (four times more often). The DQ data pin efficiency is 100% with
this sequence.
With two dualocts of data written per transaction, the COL, DQA, and DQB pins are fully utilized. Banks are
precharged using the WRA autoprecharge option rather than the PRER command in an ROWR packet on the ROW
pins.
In this example, the first transaction is directed to device Da and bank Ba. The next three transactions are directed
to the same device Da, but need to use different, non-adjacent banks Bb, Bc, Bd so there is no bank conflict. The
fifth transaction could be redirected back to bank Ba without interference, since the first transaction would have
completed by then (tRC has elapsed). Each transaction may use any value of row address (Ra, Rb, ...) and column
address (Ca1, Ca2, Cb1, Cb2, ...).
Figure 16-1 Interleaved Write Transaction with Two Dualoct Data Length
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11T12T13 T14 T15 T16T17 T18 T19 T20T21 T22 T23 T24T25 T26 T27T28T29 T30 T31 T32T33 T34 T35 T36T37 T38 T39 T40T41 T42 T43T44T45 T46 T47
CTM/CFM
ROW2
..ROW0
COL4
..COL0
DQA8..0
DQB8..0
ACT a0
ACT b0
tRC
ACT c0
ACT d0
Transaction e can use the
same bank as transaction a
ACT e0
ACT f0
tRCD
tRR
WR z1 WRA z2 WR a1 WRA a2 WR b1 WRA b2 WR c1 WRA c2 WR d1 WR d2 WR e1 WR e2
MSK (y1) MSK (y2) MSK (z1) MSK (z2) MSK (a1) MSK (a2) MSK (b1) MSK (b2) MSK (c1) MSK (c2) MSK (d1) MSK (d2)
tCWD
D (x2) D (y1) D (y2)
D (z1) D (z2) D (a1) D (a2) D (b1) D (b2)
D(c1)
D (c2) D (d1) Q (
Transaction y: WR
Transaction z: WR
Transaction a: WR
Transaction b: WR
Transaction c: WR
Transaction d: WR
Transaction e: WR
Transaction f: WR
y0 = {Da,Ba+4,Ry}
z0 = {Da,Ba+6,Rz}
a0 = {Da,Ba,Ra}
b0 = {Da,Ba+2,Rb}
c0 = {Da,Ba+4,Rc}
d0 = {Da,Ba+6,Rd}
e0 = {Da,Ba,Re}
f0 = {Da,Ba+2,Rf}
y1 = {Da,Ba+4,Cy1}
z1 = {Da,Ba+6,Cz1}
a1 = {Da,Ba,Ca1}
b1 = {Da,Ba+2,Cb1}
c1 = {Da,Ba+4,Cc1}
d1 = {Da,Ba+6,Cd1}
e1 = {Da,Ba,Ce1}
f1 = {Da,Ba+2,Cf1}
y2= {Da,Ba+4,Cy2}
z2= {Da,Ba+6,Cz2}
a2= {Da,Ba,Ca2}
b2= {Da,Ba+2,Cb2}
c2= {Da,Ba+4,Cc2}
d2= {Da,Ba+6,Cd2}
e2= {Da,Ba,Ce2}
f2= {Da,Ba+2,Cf2}
y3 = {Da,Ba+4}
z3 = {Da,Ba+6}
a3 = {Da,Ba}
b3 = {Da,Ba+2}
c3 = {Da,Ba+4}
d3 = {Da,Ba+6}
e3 = {Da,Ba}
f3 = {Da,Ba+2}
Data Sheet E0251N20 (Ver. 2.0)
29