English
Language : 

DS90UB925Q-Q1 Datasheet, PDF (21/51 Pages) Texas Instruments – 5 to 85 MHz 24-Bit Color FPD-Link III Serializer With Bidirectional Control Channel
www.ti.com
DS90UB925Q-Q1
SNLS407D – APRIL 2012 – REVISED OCTOBER 2014
Step 1: For the DS90UB925Q-Q1 and DS90UB926Q-Q1 FPD-Link III chipset, BIST Mode is enabled via the
BISTEN pin of DS90UB926Q-Q1 FPD-Link III deserializer. The desired clock source is selected through BISTC
pin.
Step 2: The DS90UB925Q-Q1 serializer is woken up through the back channel if it is not already on. The all zero
pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the
deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high and
BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will switch low
for one half of the clock period. During the BIST test, the PASS output can be monitored and counted to
determine the payload error rate.
Step 3: To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the
data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there
was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new BIST
is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the
BISTEN signal.
Step 4: The Link returns to normal operation after the deserializer BISTEN pin is low. Figure 14 shows the
waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple
errors. In most cases it is difficult to generate errors due to the robustness of the link (differential data
transmission etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect,
reducing signal condition enhancements ( Rx Equalization).
Normal
Step 1: DES in BIST
BIST
Wait
Step 2: Wait, SER in BIST
BIST
start
Step 3: DES in Normal Mode -
check PASS
BIST
stop
Step 4: DES/SER in Normal
Figure 13. Bist Mode Flow Diagram
7.3.18.2 Forward Channel And Back Channel Error Checking
While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal all-zero
pattern. The internal all-zeroes pattern goes through scrambler, dc-balancing etc. and goes over the serial link to
the deserializer. The deserializer on locking to the serial stream compares the recovered serial stream with all-
zeroes and records any errors in status registers and dynamically indicates the status on PASS pin. The
deserializer then outputs a SSO pattern on the RGB output pins.
The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as
indicated by link detect status (register bit 0x0C[0]). The CRC errors are recorded in an 8-bit register. The
register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the
functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in
BIST mode only and keeps the record of last BIST run until cleared or enters BIST mode again.
Copyright © 2012–2014, Texas Instruments Incorporated
Product Folder Links: DS90UB925Q-Q1
Submit Documentation Feedback
21