English
Language : 

MC80F0424 Datasheet, PDF (109/135 Pages) List of Unclassifed Manufacturers – 8-BIT SINGLE-CHIP MICROCONTROLLERS
Preliminary
MC80F0424/0432/0448
Oscillator
(XI pin)
STOP Mode
Internal
Clock
RESET
Internal
RESET
STOP Instruction Execution
Time can not be control by software
Stabilization Time
tST = 65.5mS @4MHz
Figure 21-6 Timing of STOP Mode Release by Reset
21.3 Stop Mode at Internal RC-Oscillated Watchdog Timer Mode
In the Internal RC-Oscillated Watchdog Timer mode, the on-chip
oscillator is stopped. But internal RC oscillation circuit is oscil-
lated in this mode. The on-chip RAM and Control registers are
held. The port pins out the values held by their respective port
data register, port direction registers.
The Internal RC-Oscillated Watchdog Timer mode is activated
by execution of STOP instruction after setting the bit RCWDT of
CKCTLR to "1". (This register should be written by byte opera-
tion. If this register is set by bit manipulation instruction, for ex-
ample "set1" or "clr1" instruction, it may be undesired operation)
Note: Caution: After STOP instruction, at least two or more
NOP instruction should be written
Ex)
LDM WDTR,#1111_1111B
LDM CKCTLR,#0010_1110B
LDM SSCR,#0101_1010B
STOP
NOP ;for stabilization time
NOP ;for stabilization time
The exit from Internal RC-Oscillated Watchdog Timer mode is
hardware reset or external interrupt including RC watchdog tim-
er. Reset re-defines all the Control registers but does not change
the on-chip RAM. External interrupts allow both on-chip RAM
and Control registers to retain their values.
If I-flag = 1, the normal interrupt response takes place. In this
case, if the bit WDTON of CKCTLR is set to "0" and the bit
WDTE of IENH is set to "1", the device will execute the watch-
dog timer interrupt service routine(Figure 8-6). However, if the
bit WDTON of CKCTLR is set to "1", the device will generate
the internal Reset signal and execute the reset processing(Figure
21-8). If I-flag = 0, the chip will resume execution starting with
the instruction following the STOP instruction. It will not vector
to interrupt service routine.(refer to Figure 21-4)
When exit from Stop mode at Internal RC-Oscillated Watchdog
Timer mode by external interrupt, the oscillation stabilization
time is required to normal operation. Figure 21-7 shows the tim-
ing diagram. When release the Internal RC-Oscillated Watchdog
Timer mode, the basic interval timer is activated on wake-up. It
is increased from 00H until FFH. The count overflow is set to start
normal operation. Therefore, before STOP instruction, user must
be set its relevant prescaler divide ratio to have long enough time
(more than 20msec). This guarantees that oscillator has started
and stabilized. By reset, exit from internal RC-Oscillated Watch-
dog Timer mode is shown in Figure 21-8.
MAR. 2005 Ver 0.2
105