English
Language : 

LTC3883 Datasheet, PDF (42/112 Pages) Linear Technology – Single Phase Step-Down DC/DC Controller with Digital Power System Management
LTC3883/LTC3883-1
Applications Information
The optional Schottky diodes conduct during the dead time
between the conduction of the two power MOSFETs. These
prevent the body diodes of the bottom MOSFETs from turn-
ing on, storing charge during the dead time and requiring
a reverse recovery period that could cost as much as 3%
in efficiency at high VIN. A 1A to 3A Schottky is generally
a good compromise for both regions of operation due to
the relatively small average current. Larger diodes result
in additional transition losses due to their larger junction
capacitance.
Variable Delay Time, Soft-Start and Output
Voltage Ramping
The LTC3883 must enter the run state prior to soft-start.
The RUN pin is released after the part initializes and VIN is
greater than the VIN_ON threshold. If multiple LTC3883s
are used in an application, they should be configured to
share the same RUN pins. They all hold their respective
RUN pins low until all devices initialize and VIN exceeds
the VIN_ON threshold for all devices. The SHARE_CLK
pin assures all the devices connected to the signal use
the same time base.
After the RUN pin releases, the controller waits for the
user-specified turn-on delay (TON_DELAY) prior to
initiating an output voltage ramp. Multiple LTC3883s and
other LTC parts can be configured to start with variable
delay times. To work correctly, all devices use the same
timing clock (SHARE_CLK) and all devices must share
the RUN pin. This allows the relative delay of all parts
to be synchronized. The actual variation in the delay will
be dependent on the highest clock rate of the devices
connected to the SHARE_CLK pin (all Linear Technology
ICs are configured to allow the fastest SHARE_CLK signal
to control the timing of all devices). The SHARE_CLK signal
can be ±10% in frequency, thus the actual time delays will
have proportional variance.
Soft-start is performed by actively regulating the load
voltage while digitally ramping the target voltage from 0.0V
to the commanded voltage set point. The rise time of the
voltage ramp can be programmed using the TON_RISE
command to minimize inrush currents associated with the
start-up voltage ramp. The soft-start feature is disabled
by setting TON_RISE to any value less than 0.250ms.
42
The LTC3883 will perform the necessary math internally
to assure the voltage ramp is controlled to the desired
slope. However, the voltage slope can not be any faster
than the fundamental limits of the power stage. The shorter
TON_RISE time is set, the more jagged the TON_RISE ramp
will appear. The number of steps in the ramp is equal to
TON_RISE/0.1ms.
The LTC3883 PWM will always use discontinuous mode
during the TON_RISE operation. In discontinuous mode,
the bottom gate is turned off as soon as reverse current
is detected in the inductor. This will allow the regulator
to start up into a pre-biased load.
There is no tracking feature in the LTC3883; however,
two outputs can be given the same TON_RISE and
TON_DELAY times to effectively ramp up at the same
time. If the RUN pin is released at the same time and both
LTC3883s use the same time base, the outputs will track
very closely. If the circuit is in a PolyPhase configuration,
all timing parameters must be the same.
The described method of start-up sequencing is time based.
For concatenated events it is possible to control the RUN pin
based on the GPIO pin of a different controller. The GPIO
pin can be configured to release when the output voltage of
the converter is greater than the VOUT_UV_FAULT_LIMIT.
It is recommended to use the deglitched VOUT UV fault
limit because there is little appreciable time delay between
the converter crossing the UV threshold and the GPIO
pin releasing. The deglitched output can be enabled by
setting the MFR_GPIO_PROPAGATE_VOUT_UVUF bit
in the MFR_GPIO_PROPAGATE_LTC3883 command.
(Refer to the MFR section of the PMBus commands in this
document). The deglitched signal may have some glitching
as the VOUT signal transitions through the comparator
threshold. A small internal digital filter of 250µs has been
added to minimize this problem. To minimize the risk of
GPIO pins glitching, make the TON_RISE times less than
100ms. If unwanted transitions still occur on GPIO, place a
capacitor to ground on the GPIO pin to filter the waveform.
The RC time-constant of the filter should be set sufficiently
fast to assure no appreciable delay is incurred. A value
of 300µs to 500µs will provide some additional filtering
without significantly delaying the trigger event.
3883f