English
Language : 

AC82GL40-SLB95 Datasheet, PDF (91/98 Pages) Intel Corporation – Intel® Celeron® Mobile Processor Dual-Core on 45-nm Process
Thermal Specifications and Design Considerations
When PROCHOT# is driven by an external agent, if only Intel Thermal Monitor 1 is
enabled on both cores, then both processor cores will have their core clocks modulated.
If Intel Thermal Monitor 2 is enabled on both cores, then both processor cores will
enter the lowest programmed Intel Thermal Monitor 2 performance state. It should be
noted that Force Intel Thermal Monitor 1 on Intel Thermal Monitor 2, enabled via BIOS,
does not have any effect on external PROCHOT#. If PROCHOT# is driven by an external
agent when Intel Thermal Monitor 1, Intel Thermal Monitor 2, and Force Intel Thermal
Monitor 1 on Intel Thermal Monitor 2 are all enabled, then the processor will still apply
only Intel Thermal Monitor 2.
PROCHOT# may be used for thermal protection of voltage regulators (VR). System
designers can create a circuit to monitor the VR temperature and activate the TCC
when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low)
and activating the TCC, the VR will cool down as a result of reduced processor power
consumption. Bi-directional PROCHOT# can allow VR thermal designs to target
maximum sustained current instead of maximum current. Systems should still provide
proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case
of system cooling failure. The system thermal design should allow the power delivery
circuitry to operate within its temperature specification even while the processor is
operating at its TDP. With a properly designed and characterized thermal solution, it is
anticipated that bi-directional PROCHOT# would only be asserted for very short periods
of time when running the most power intensive applications. An under-designed
thermal solution that is not able to prevent excessive assertion of PROCHOT# in the
anticipated ambient environment may cause a noticeable performance loss.
§
Datasheet
91