English
Language : 

AC82GL40-SLB95 Datasheet, PDF (15/98 Pages) Intel Corporation – Intel® Celeron® Mobile Processor Dual-Core on 45-nm Process
Low Power Features
2.1.2.5
2.1.2.6
2.2
Deep Sleep State
Deep Sleep state is a very low-power state the processor can enter while maintaining
context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep
state. BCLK may be stopped during the Deep Sleep state for additional platform level
power savings. BCLK stop/restart timings on appropriate chipset based platforms with
the CK505 clock chip are as follows:
• Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of
DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep.
• Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels
within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK
periods.
To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be re-
started after DPSLP# deassertion as described above. A period of 15 microseconds (to
allow for PLL stabilization) must occur before the processor can be considered to be in
the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter
the Stop-Grant state.
While in Deep Sleep state, the processor is incapable of responding to snoop
transactions or latching interrupt signals. No transitions of signals are allowed on the
FSB while the processor is in Deep Sleep state. Any transition on an input signal before
the processor has returned to Stop-Grant state results in unpredictable behavior.
Deeper Sleep State
The Deeper Sleep state is similar to the Deep Sleep state but further reduces core
voltage levels. One of the potential lower core voltage levels is achieved by entering the
base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the
DPRSTP# pin while in the Deep Sleep state. The following lower core voltage level is
achieved by entering the Intel Enhanced Deeper Sleep state which is a sub-state of
Deeper Sleep state. Intel Enhanced Deeper Sleep state is entered through assertion of
the DPRSTP# pin while in the Deep Sleep only when the L2 cache has been completely
shut down.
Exit from Deeper Sleep is initiated by DPRSTP# deassertion when either core requests
a core state other than C4 or either core requests a processor performance state other
than the lowest operating point.
Enhanced Intel SpeedStep® Technology
Some processors feature Enhanced Intel SpeedStep Technology. See each processor’s
DCL to see if it supports Enhanced Intel SpeedStep Technology. Following are the key
features of Enhanced Intel SpeedStep Technology:
• Multiple voltage and frequency operating points provide optimal performance at the
lowest power.
• Voltage and frequency selection is software-controlled by writing to processor
MSRs:
— If the target frequency is higher than the current frequency, VCC is ramped up
in steps by placing new values on the VID pins, and the PLL then locks to the
new frequency.
— If the target frequency is lower than the current frequency, the PLL locks to the
new frequency and the VCC is changed through the VID pin mechanism.
— Software transitions are accepted at any time. If a previous transition is in
progress, the new transition is deferred until the previous transition completes.
Datasheet
15