English
Language : 

PXD10 Datasheet, PDF (8/130 Pages) Lumins Inc. – 4” Dia.X 6” extruded aluminum step poles
Overview
The device can be awakened from STANDBY mode via from any of as many as 19 I/O pins, a reset or
from a periodic wake-up using a low power oscillator.
STOP mode maintains power to the entire device allowing the retention of all on-chip registers and
memory, and providing a faster recovery low power mode than the lowest STANDBY mode. There is no
need to reconfigure the device before executing code. The clocks to the core and peripherals are halted and
can be optionally stopped to the oscillator or PLL at the expense of a slower start-up time.
STOP is entered from RUN mode only. Wake-up from STOP mode is triggered by an external event or by
the internal periodic wake-up, if enabled.
RUN modes are the main operating mode where the entire device can be powered and clocked and from
which most processing activity is done. Four dynamic RUN modes are supported—RUN0 - RUN3. The
ability to configure and select different RUN modes enables different clocks and power configurations to
be supported with respect to each other and to allow switching between different operating conditions. The
necessary peripherals, clock sources, clock speed and system clock prescalers can be independently
configured for each of the four RUN modes of the device.
HALT mode is a reduced activity, low power mode intended for moderate periods of lower processing
activity. In this mode the core system clocks are stopped but user-selected peripheral tasks can continue to
run. It can be configured to provide more efficient power management features (switch-off PLL, flash
memory, main regulator, etc.) at the cost of longer wake up latency. The system returns to RUN mode as
soon as an event or interrupt is pending.
PXD10 Microcontroller Data Sheet, Rev. 1
8
Freescale Semiconductor