English
Language : 

TL16C750 Datasheet, PDF (5/35 Pages) Texas Instruments – ASYNCHRONOUS COMMUNICATIONS ELEMENT WITH 64-BYTE FIFOs AND AUTOFLOW CONTROL
TL16C750
ASYNCHRONOUS COMMUNICATIONS ELEMENT
WITH 64-BYTE FIFOs AND AUTOFLOW CONTROL
SLLS191C – JANUARY 1995 – REVISED DECEMBER 1997
Terminal Functions (Continued)
TERMINAL
NAME
NO. NO. I/O
FN PM
DESCRIPTION
RD1
RD2
24 9
25 10
I Read inputs. When either RD1 or RD2 is active (low or high respectively) while the ACE is selected, the CPU
is allowed to read status information or data from a selected ACE register. Only one of these inputs is required
for the transfer of data during a read operation; the other input should be tied in its inactive state (i.e., RD2 tied
low or RD1 tied high).
RI
43 38 I Ring indicator. RI is a modem status signal. Its condition can be checked by reading bit 6 (RI) of the modem
status register. Bit 2 (TERI) of the modem status register indicates that RI has transitioned from a low to a high
level since the last read from the modem status register. If the modem status interrupt is enabled when this
transition occurs, an interrupt is generated.
RTS
36 26 O Request to send. When active, RTS informs the modem or data set that the ACE is ready to receive data. RTS
is set to its active level by setting the RTS MCR bit and is set to its inactive (high) level either as a result of a
master reset, during loop mode operations, or by clearing bit 1 (RTS) of the MCR. In the auto-RTS mode, RTS
is set to its inactive level by the receiver threshold control logic.
RXRDY
32 21 O Receiver ready. Receiver direct memory access (DMA) signalling is available with RXRDY. When operating
in the FIFO mode, one of two types of DMA signalling can be selected through the FIFO control register bit
3 (FCR3). When operating in the TL16C450 mode, only DMA mode 0 is allowed. Mode 0 supports
single-transfer DMA in which a transfer is made between CPU bus cycles. Mode 1 supports multitransfer DMA
in which multiple transfers are made continuously until the receiver FIFO has been emptied. In DMA mode 0
(FCR0 = 0 or FCR0 = 1, FCR3 = 0), when there is at least one character in the receiver FIFO or receiver holding
register, RXRDY is active (low). When RXRDY has been active but there are no characters in the FIFO or
holding register, RXRDY goes inactive (high). In DMA mode 1 (FCR0 = 1, FCR3 = 1), when the trigger level
or the timeout has been reached, RXRDY goes active (low); when it has been active but there are no more
characters in the FIFO or holding register, it goes inactive (high).
SIN
11 55 I Serial data. SIN is the input from a connected communications device.
SOUT
13 58 O Composite serial data output to a connected communication device. SOUT is set to the marking (high) level
as a result of master reset.
TXRDY
27 13 O Transmitter ready. Transmitter DMA signalling is available with TXRDY. When operating in the FIFO mode,
one of two types of DMA signalling can be selected through FCR3. When operating in the TL16C450 mode,
only DMA mode 0 is allowed. Mode 0 supports single-transfer DMA in which a transfer is made between CPU
bus cycles. Mode 1 supports multitransfer DMA in which multiple transfers are made continuously until the
transmit FIFO has been filled.
VCC
VSS
WR1
WR2
44 40
22 8
20 4
21 6
5-V supply voltage
Supply common
I Write inputs. When either input is active (low or high respectively) and while the ACE is selected, the CPU is
allowed to write control words or data into a selected ACE register. Only one of these inputs is required to
transfer data during a write operation; the other input should be tied in its inactive state (i.e., WR2 tied low or
WR1 tied high).
XIN
XOUT
18 1 I/O External clock. XIN and XOUT connect the ACE to the main timing reference (clock or crystal).
19 2
detailed description
autoflow control
Auto-flow control is composed of auto-CTS and auto-RTS. With auto-CTS, CTS must be active before the
transmit FIFO can emit data (see Figure 1). With auto-RTS, RTS becomes active when the receiver is empty
or the threshold has not been reached. When RTS is connected to CTS, data transmission does not occur
unless the receive FIFO has empty space. Thus, overrun errors are eliminated when ACE1 and ACE2 are
TLC16C750s with enabled autoflow control. If not, overrun errors occur if the transmit data rate exceeds the
receive FIFO read latency.
• POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5