English
Language : 

MC68HC11F1 Datasheet, PDF (25/68 Pages) Motorola, Inc – Technical Summary 8-Bit Microcontroller
5 Resets and Interrupts
There are three sources of reset on the MC68HC11F1 and MC68HC11FC0, each having its own reset
vector:
• RESET pin
• Clock monitor failure
• Computer operating properly (COP) failure
There are 22 interrupt sources serviced by 18 interrupt vectors. (The SCI interrupt vector services five
SCI interrupt sources.) Three of the interrupt vectors are non-maskable:
• Illegal opcode trap
• Software interrupt
• XIRQ pin (pseudo non-maskable interrupt)
The other 19 interrupts, generated mostly by on-chip peripheral systems, are maskable. Maskable in-
terrupts are recognized only if the global interrupt mask bit (I) in the condition code register (CCR) is
clear. Maskable interrupts have a default priority arrangement out of reset. However, any one interrupt
source can be elevated to the highest maskable priority position by writing to the HPRIO register. This
register can be written at any time, provided the I bit in the CCR is set.
In addition to the global I bit, all maskable interrupt sources except the external interrupt (IRQ pin) are
subject to local enable bits in control registers. Each of these interrupt sources also sets a correspond-
ing flag bit in a control register that can be polled by software.
Several of these flags are automatically cleared during the normal course of responding to the interrupt
requests. For example, the RDRF flag is set when a byte has been received in the SCI. The normal
response to an RDRF interrupt request is to read the SCI status register to check for receive errors,
then to read the received data from the SCI data register. It is precisely these two steps that are required
to clear the RDRF flag, so no further instructions are necessary.
5.1 Interrupt Sources
The following table summarizes the interrupt sources, vector addresses, masks, and flag bits.
MC68HC11F1/FC0
MC68HC11FTS/D
MOTOROLA
25