English
Language : 

HD64F3694FXV Datasheet, PDF (324/452 Pages) Renesas Technology Corp – Old Company Name in Catalogs and Other Documents
Section 18 Power-On Reset and Low-Voltage Detection Circuits (Optional)
tPWON
Vcc
Vpor
Vss
RES
Vss
PSS-reset
signal
OVF
Internal reset
signal
131,072 cycles
PSS counter starts
Reset released
Figure 18.2 Operational Timing of Power-On Reset Circuit
18.3.2 Low-Voltage Detection Circuit
LVDR (Reset by Low Voltage Detect) Circuit:
Figure 18.3 shows the timing of the LVDR function. The LVDR enters the module-standby state
after a power-on reset is canceled. To operate the LVDR, set the LVDE bit in LVDCR to 1, wait
for 50 µs (tLVDON) until the reference voltage and the low-voltage-detection power supply have
stabilized by a software timer, etc., then set the LVDRE bit in LVDCR to 1. After that, the output
settings of ports must be made. To cancel the low-voltage detection circuit, first the LVDRE bit
should be cleared to 0 and then the LVDE bit should be cleared to 0. The LVDE and LVDRE bits
must not be cleared to 0 simultaneously because incorrect operation may occur.
When the power-supply voltage falls below the Vreset voltage (typ. = 2.3 V or 3.6 V), the LVDR
clears the LVDRES signal to 0, and resets the prescaler S. The low-voltage detection reset state
remains in place until a power-on reset is generated. When the power-supply voltage rises above
the Vreset voltage again, the prescaler S starts counting. It counts 131,072 clock (φ) cycles, and
then releases the internal reset signal. In this case, the LVDE, LVDSEL, and LVDRE bits in
LVDCR are not initialized.
Note that if the power supply voltage (Vcc) falls below VLVDRmin = 1.0 V and then rises from that
point, the low-voltage detection reset may not occur.
If the power supply voltage (Vcc) falls below Vpor = 100 mV, a power-on reset occurs.
Rev.5.00 Nov. 02, 2005 Page 294 of 418
REJ09B0028-0500