English
Language : 

R01DS0190EJ0100 Datasheet, PDF (28/110 Pages) Renesas Technology Corp – 32 MHz 32-bit RX MCUs, 50 DMIPS, up to 128 Kbytes of flash memory
RX111 Group
2. CPU
2.1 General-Purpose Registers (R0 to R15)
This CPU has 16 general-purpose registers (R0 to R15). R0 to R15 can be used as data registers or address registers.
R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the
interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor
status word (PSW).
2.2 Control Registers
(1) Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)
The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP).
Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the
processor status word (PSW).
Set the ISP or USP to a multiple of 4, as this reduces the numbers of cycles required to execute interrupt sequences and
instructions entailing stack manipulation.
(2) Interrupt Table Register (INTB)
The interrupt table register (INTB) specifies the address where the relocatable vector table starts.
(3) Program Counter (PC)
The program counter (PC) indicates the address of the instruction being executed.
(4) Processor Status Word (PSW)
The processor status word (PSW) indicates the results of instruction execution or the state of the CPU.
(5) Backup PC (BPC)
The backup PC (BPC) is provided to speed up response to interrupts.
After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC register.
(6) Backup PSW (BPSW)
The backup PSW (BPSW) is provided to speed up response to interrupts.
After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The
allocation of bits in the BPSW corresponds to that in the PSW.
(7) Fast Interrupt Vector Register (FINTV)
The fast interrupt vector register (FINTV) is provided to speed up response to interrupts.
The FINTV register specifies a branch destination address when a fast interrupt has been generated.
2.3 Register Associated with DSP Instructions
(1) Accumulator (ACC)
The accumulator (ACC) is a 64-bit register used for DSP instructions. The accumulator is also used for the multiply and
multiply-and-accumulate instructions; EMUL, EMULU, MUL, and RMPA, in which case the prior value in the
accumulator is modified by execution of the instruction.
Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO
instructions write data to the higher-order 32 bits (bits 63 to 32) and the lower-order 32 bits (bits 31 to 0), respectively.
Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI
instructions read data from the higher-order 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.
R01DS0190EJ0100 Rev.1.00
Jun 19, 2013
Page 28 of 107