English
Language : 

PIC18F2220 Datasheet, PDF (43/388 Pages) Microchip Technology – 28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
PIC18F2220/2320/4220/4320
3.6.1 EXAMPLE – USART
An adjustment may be indicated when the USART
begins to generate framing errors or receives data
with errors while in Asynchronous mode. Framing
errors indicate that the system clock frequency is too
high – try decrementing the value in the OSCTUNE
register to reduce the system clock frequency. Errors in
data may suggest that the system clock speed is too
low – increment OSCTUNE.
3.6.2 EXAMPLE – TIMERS
This technique compares system clock speed to some
reference clock. Two timers may be used; one timer is
clocked by the peripheral clock, while the other is
clocked by a fixed reference source, such as the
Timer1 oscillator.
Both timers are cleared but the timer clocked by the ref-
erence generates interrupts. When an interrupt occurs,
the internally clocked timer is read and both timers are
cleared. If the internally clocked timer value is greater
than expected, then the internal oscillator block is
running too fast – decrement OSCTUNE.
3.6.3
EXAMPLE – CCP IN CAPTURE
MODE
A CCP module can use free running Timer1 (or
Timer3), clocked by the internal oscillator block and an
external event with a known period (i.e., AC power fre-
quency). The time of the first event is captured in the
CCPRxH:CCPRxL registers and is recorded for use
later. When the second event causes a capture, the
time of the first event is subtracted from the time of the
second event. Since the period of the external event is
known, the time difference between events can be
calculated.
If the measured time is much greater than the
calculated time, the internal oscillator block is running
too fast – decrement OSCTUNE. If the measured time
is much less than the calculated time, the internal
oscillator block is running too slow – increment
OSCTUNE.
 2003 Microchip Technology Inc.
DS39599C-page 41