English
Language : 

PIC16F882_09 Datasheet, PDF (187/328 Pages) Microchip Technology – 28/40/44-Pin, Enhanced Flash-Based 8-Bit CMOS Microcontrollers with nanoWatt Technology
PIC16F882/883/884/886/887
13.3.3 MASTER MODE
The master can initiate the data transfer at any time
because it controls the SCK. The master determines
when the slave is to broadcast data by the software
protocol.
In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be dis-
abled (programmed as an input). The SSPSR register
will continue to shift in the signal present on the SDI pin
at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
a normal received byte (interrupts and Status bits
appropriately set). This could be useful in receiver
applications as a “Line Activity Monitor” mode.
The clock polarity is selected by appropriately program-
ming the CKP bit of the SSPCON register. This, then,
would give waveforms for SPI communication as
shown in Figure 13-2, Figure 13-4 and Figure 13-5,
where the MSb is transmitted first. In Master mode, the
SPI clock rate (bit rate) is user programmable to be one
of the following:
• FOSC/4 (or TCY)
• FOSC/16 (or 4 • TCY)
• FOSC/64 (or 16 • TCY)
• Timer2 output/2
This allows a maximum data rate (at 40 MHz) of
10.00 Mbps.
Figure 13-2 shows the waveforms for Master mode.
When the CKE bit of the SSPSTAT register is set, the
SDO data is valid before there is a clock edge on SCK.
The change of the input sample is shown based on the
state of the SMP bit of the SSPSTAT register. The time
when the SSPBUF is loaded with the received data is
shown.
FIGURE 13-2:
Write to
SSPBUF
SCK
(CKP = 0
CKE = 0)
SCK
(CKP = 1
CKE = 0)
SCK
(CKP = 0
CKE = 1)
SCK
(CKP = 1
CKE = 1)
SDO
(CKE = 0)
SDO
(CKE = 1)
SDI
(SMP = 0)
Input
Sample
(SMP = 0)
SDI
(SMP = 1)
Input
Sample
(SMP = 1)
SSPIF
SSPSR to
SSPBUF
SPI MODE WAVEFORM (MASTER MODE)
4 Clock
Modes
bit 7
bit 6 bit 5
bit 4
bit 3 bit 2
bit 1 bit 0
bit 7
bit 6 bit 5
bit 4
bit 3 bit 2
bit 1 bit 0
bit 7
bit 0
bit7
bit 0
Next Q4 Cycle
after Q2↓
© 2009 Microchip Technology Inc.
DS41291F-page 185