English
Language : 

STAC9758 Datasheet, PDF (33/119 Pages) Integrated Device Technology – HIGH-PERFORMANCE 6-CHANNEL AC’97 2.3 CODEC WITH UNIVERSAL JACKS
STAC9758/9759
HIGH-PERFORMANCE 6-CHANNEL AC’97 2.3 CODEC WITH UNIVERSAL JACKS™
PC AUDIO
5.2.1.
AC-Link Variable Sample Rate Operation
The AC-Link serial interconnect defines a digital data and control pipe between the Controller and
the CODEC. The AC-Link supports 12 20-bit slots at 48 KHz on SDATA_IN and SDATA_OUT. The
time division multiplexed (TDM) “slot-based” architecture supports a per-slot valid tag infrastructure
that the source of each slot’s data sets or clears to indicate the validity of the slot data within the cur-
rent audio frame. This tag infrastructure can be used to support transfers between Controller and
CODEC at any sample rate.
5.2.2.
Variable Sample Rate Signaling Protocol
AC-Link’s tag infrastructure imposes FIFO requirements on both sides of the AC-Link. For example,
in passing a 44.1 KHz stream across the AC-Link, for every 480 audio output frames that are sent
across, 441 of them must contain valid sample data. Does the AC‘97 Digital Controller pass all 441
PCM samples followed by 39 invalid slots? Or does the AC‘97 Digital Controller evenly interleave
valid and non-valid slots? Each possible method brings with it different FIFO requirements. To
achieve interoperability between AC‘97 Digital Controllers and CODECs designed by different man-
ufacturers, it is necessary to standardize the scheme for at least one side of the AC-Link so that the
FIFO requirements will be common to all designs. The CODEC side of the AC-Link is the focus of
this standardization.
The new standard approach calls for the addition of “on demand” slot request flags. These flags are
passed from the CODEC to the AC‘97 Digital Controller during every audio input frame. Each time
the AC‘97 Digital Controller sees one or more of the newly-defined slot request flags set active (low)
in a given audio input frame, it knows that it must pass along the next PCM sample for the corre-
sponding slot(s) in the AC-Link output frame that immediately follows.
The VRA (Variable Rate Audio) bit in the Extended Audio Status and Control Register must be set to
1 to enable variable sample rate audio operation. Setting the VRA = 1 has two functions:
1. Enables PCM DAC/ADC conversions at variable sample rates by write enabling Sample Rate
Registers 2C-34h.
2. Enables the on demand CODEC-to-Controller signaling protocol using SLOTREQ bits that
becomes necessary when a DAC’s sample rate varies from the 48 KHz AC-Link serial frame
rate
The table below summarizes the behavior:
Table 6. VRA Behavior
AC‘97 functionality
SLOTREQ bits
sample rate registers
VRA = 0
always 0 (data each frame)
forced to 48 KHz
VRA = 1
0 or 1 (data on demand)
writable
Note: If more than one CODEC is being used with the SAME controller DMA engine, VRA should
NOT be used.
For variable sample rate output, the CODEC examines its sample rate control registers, the state of
its FIFOs, and the incoming SDATA_OUT tag bits at the beginning of each AC-Link output frame to
determine which SLOTREQ bits to set active (low). SLOTREQ bits asserted during the current
AC-Link input frame signal which active output slots require data from the AC‘97 Digital Controller in
the next audio output frame. An active output slot is defined as any slot supported by the CODEC
that is not in a power-down state. For fixed 48 KHz operation the SLOTREQ bits are always set
active (low) and a sample is transferred in each frame.
IDT™
33
HIGH-PERFORMANCE 6-CHANNEL AC’97 2.3 CODEC WITH UNIVERSAL JACKS™
STAC9758/9759
V 1.2 1206