English
Language : 

CC3200MOD_15 Datasheet, PDF (46/66 Pages) Texas Instruments – CC3200MOD SimpleLink™ Wi-Fi® and Internet-of-Things Module Solution, a Single-Chip Wireless MCU
CC3200MOD
SWRS166 – DECEMBER 2014
www.ti.com
The NWP can be active or in LPDS mode and takes care of its own mode transitions. When there is no
network activity, the NWP sleeps most of the time and wakes up only for beacon reception.
Table 5-3. Networking Subsystem Modes
NETWORK PROCESSOR
MODE
DESCRIPTION
Network active mode processing Transmitting or receiving IP protocol packets
layer 3, 2, and 1
Network active mode (processing Transmitting or receiving MAC management frames; IP processing not required.
layer 2 and 1)
Network active listen mode
Special power optimized active mode for receiving beacon frames (no other frames supported)
Network connected Idle
A composite mode that implements 802.11 infrastructure power save operation. The CC3200R network
processor automatically goes into LPDS mode between beacons and then wakes to active listen mode
to receive a beacon and determine if there is pending traffic at the access point. If not, the network
processor returns to LPDS mode and the cycle repeats.
Network LPDS mode
Low-power state between beacons in which the state is retained by the network processor, allowing for
a rapid wake up.
Network disabled
The operation of the application and network processor ensures that the device remains in the lowest
power mode most of the time to preserve battery life. Table 5-4 summarizes the important CC3200 chip-
level power modes.
Table 5-4. Important Chip-Level Power Modes
POWER STATES
FOR APPLICATIONS
MCU AND
NETWORK
PROCESSOR
NETWORK PROCESSOR ACTIVE MODE
(TRANSMIT, RECEIVE, OR LISTEN)
NETWORK PROCESSOR LPDS MODE
NETWORK
PROCESSOR
DISABLED
MCU active mode
Chip = active (C)
Chip = active
Chip = active
MCU LPDS mode
Chip = active (A)
Chip = LPDS (B)
Chip = LPDS
MCU hibernate mode Not supported because chip is hibernated by Not supported because chip is hibernated by Chip = hibernate (D)
MCU; thus, network processor cannot be in MCU; thus, network processor cannot be in
active mode
LPDS mode
The following examples show the use of the power modes in applications:
• A product that is continuously connected to the network in the 802.11 infrastructure power-save mode
but sends and receives little data spends most of the time in connected idle, which is a composite of
modes A (receiving a beacon frame) and B (waiting for the next beacon).
• A product that is not continuously connected to the network but instead wakes up periodically (for
example, every 10 minutes) to send data spends most of the time in mode D (hibernate), jumping
briefly to mode C (active) to transmit data.
5.8 Memory
5.8.1 Internal Memory
The CC3200 device includes on-chip SRAM to which application programs are downloaded and executed.
The application developer must share the SRAM for code and data. To select the appropriate SRAM
configuration, see the device variants listed in the orderable addendum at the end of this datasheet. The
micro direct memory access (μDMA) controller can transfer data to and from SRAM and various
peripherals. The CC3200 ROM holds the rich set of peripheral drivers, which saves SRAM space. For
more information on drivers, see the CC3200 API list.
46
Detailed Description
Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated