English
Language : 

PIC16F870_13 Datasheet, PDF (96/172 Pages) Microchip Technology – 28/40-Pin, 8-Bit CMOS FLASH Microcontrollers
PIC16F870/871
FIGURE 11-8:
SLOW RISE TIME (MCLR TIED TO VDD)
5V
VDD
0V
1V
MCLR
INTERNAL POR
PWRT TIME-OUT
OST TIME-OUT
TPWRT
TOST
INTERNAL RESET
11.10 Interrupts
The PIC16F870/871 family has up to 14 sources of
interrupt. The Interrupt Control register (INTCON)
records individual interrupt requests in flag bits. It also
has individual and global interrupt enable bits.
Note:
Individual interrupt flag bits are set,
regardless of the status of their
corresponding mask bit, or the GIE bit.
A global interrupt enable bit, GIE (INTCON<7>),
enables (if set) all unmasked interrupts, or disables (if
cleared) all interrupts. When bit GIE is enabled, and an
interrupt’s flag bit and mask bit are set, the interrupt will
vector immediately. Individual interrupts can be dis-
abled through their corresponding enable bits in vari-
ous registers. Individual interrupt bits are set,
regardless of the status of the GIE bit. The GIE bit is
cleared on RESET.
The “return from interrupt” instruction, RETFIE, exits
the interrupt routine as well as sets the GIE bit, which
re-enables interrupts.
The RB0/INT pin interrupt, the RB port change
interrupt, and the TMR0 overflow interrupt flags are
contained in the INTCON register.
The peripheral interrupt flags are contained in the spe-
cial function registers, PIR1 and PIR2. The correspond-
ing interrupt enable bits are contained in special
function registers, PIE1 and PIE2, and the peripheral
interrupt enable bit is contained in special function
register, INTCON.
When an interrupt is responded to, the GIE bit is
cleared to disable any further interrupt, the return
address is pushed onto the stack and the PC is loaded
with 0004h. Once in the Interrupt Service Routine, the
source(s) of the interrupt can be determined by polling
the interrupt flag bits. The interrupt flag bit(s) must be
cleared in software before re-enabling interrupts to
avoid recursive interrupts.
For external interrupt events, such as the INT pin or
PORTB change interrupt, the interrupt latency will be
three or four instruction cycles. The exact latency
depends when the interrupt event occurs. The latency
is the same for one or two-cycle instructions. Individual
interrupt flag bits are set, regardless of the status of
their corresponding mask bit, PEIE bit, or GIE bit.
DS30569C-page 96
 2000-2013 Microchip Technology Inc.