English
Language : 

PIC24HJ32GP302_11 Datasheet, PDF (269/368 Pages) Microchip Technology – High-Performance, 16-bit Microcontrollers
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04
26.0 INSTRUCTION SET SUMMARY
Note:
This data sheet summarizes the
features of the PIC24HJ32GP302/304,
PIC24HJ64GPX02/X04
and
PIC24HJ128GPX02/X04 families of
devices. It is not intended to be a
comprehensive reference source. To
complement the information in this data
sheet, refer to the “dsPIC33F/PIC24H
Family Reference Manual”. Please see
the
Microchip
web
site
(www.microchip.com) for the latest
dsPIC33F/PIC24H Family Reference
Manual sections.
The PIC24H instruction set is identical to that of the
PIC24F, and is a subset of the dsPIC30F/33F
instruction set.
Most instructions are a single program memory word
(24 bits). Only three instructions require two program
memory locations.
Each single-word instruction is a 24-bit word, divided
into an 8-bit opcode, which specifies the instruction
type and one or more operands, which further specify
the operation of the instruction.
The instruction set is highly orthogonal and is grouped
into five basic categories:
• Word or byte-oriented operations
• Bit-oriented operations
• Literal operations
• Control operations
Table 26-1 shows the general symbols used in
describing the instructions.
The PIC24H instruction set summary in Table 26-2 lists
all the instructions, along with the status flags affected
by each instruction.
Most word or byte-oriented W register instructions
(including barrel shift instructions) have three
operands:
• The first source operand which is typically a
register ‘Wb’ without any address modifier
• The second source operand which is typically a
register ‘Ws’ with or without an address modifier
• The destination of the result which is typically a
register ‘Wd’ with or without an address modifier
However, word or byte-oriented file register instructions
have two operands:
• The file register specified by the value ‘f’
• The destination, which could either be the file
register ‘f’ or the W0 register, which is denoted as
‘WREG’
Most bit-oriented instructions (including simple
rotate/shift instructions) have two operands:
• The W register (with or without an address
modifier) or file register (specified by the value of
‘Ws’ or ‘f’)
• The bit in the W register or file register
(specified by a literal value or indirectly by the
contents of register ‘Wb’)
The literal instructions that involve data movement may
use some of the following operands:
• A literal value to be loaded into a W register or file
register (specified by the value of ‘k’)
• The W register or file register where the literal
value is to be loaded (specified by ‘Wb’ or ‘f’)
However, literal instructions that involve arithmetic or
logical operations use some of the following operands:
• The first source operand which is a register ‘Wb’
without any address modifier
• The second source operand which is a literal
value
• The destination of the result (only if not the same
as the first source operand) which is typically a
register ‘Wd’ with or without an address modifier
The control instructions may use some of the following
operands:
• A program memory address
• The mode of the table read and table write
instructions
All instructions are a single word, except for certain
double word instructions, which were made double
word instructions so that all the required information is
available in these 48 bits. In the second word, the
8 MSbs are ‘0’s. If this second word is executed as an
instruction (by itself), it will execute as a NOP.
Most single-word instructions are executed in a single
instruction cycle, unless a conditional test is true, or the
program counter is changed as a result of the
instruction. In these cases, the execution takes two
instruction cycles with the additional instruction cycle(s)
executed as a NOP. Notable exceptions are the BRA
(unconditional/computed branch), indirect CALL/GOTO,
all table reads and writes and RETURN/RETFIE
instructions, which are single-word instructions but take
two or three cycles. Certain instructions that involve skip-
ping over the subsequent instruction require either two
or three cycles if the skip is performed, depending on
whether the instruction being skipped is a single-word or
double word instruction. Moreover, double word moves
require two cycles. The double word instructions
execute in two instruction cycles.
Note:
For more details on the instruction set,
refer to the “16-bit MCU and DSC
Programmer’s Reference Manual”
(DS70157).
© 2011 Microchip Technology Inc.
DS70293E-page 269