English
Language : 

PIC24HJ32GP302_11 Datasheet, PDF (263/368 Pages) Microchip Technology – High-Performance, 16-bit Microcontrollers
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04
25.2 On-Chip Voltage Regulator
All
of
the
PIC24HJ32GP302/304,
PIC24HJ64GPX02/X04 and PIC24HJ128GPX02/X04
devices power their core digital logic at a nominal 2.5V.
This can create a conflict for designs that are required
to operate at a higher typical voltage, such as 3.3V. To
simplify system design, all devices in the
PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 and
PIC24HJ128GPX02/X04 family incorporate an on-chip
regulator that allows the device to run its core logic from
VDD.
The regulator provides power to the core from the other
VDD pins. When the regulator is enabled, a low-ESR
(less than 5 Ohms) capacitor (such as tantalum or
ceramic) must be connected to the VCAP pin
(Figure 25-1). This helps to maintain the stability of the
regulator. The recommended value for the filter capac-
itor is provided in Table 28-13 located in Section 28.1
“DC Characteristics”.
Note:
It is important for the low-ESR capacitor to
be placed as close as possible to the VCAP
pin.
On a POR, it takes approximately 20 μs for the on-chip
voltage regulator to generate an output voltage. During
this time, designated as TSTARTUP, code execution is
disabled. TSTARTUP is applied every time the device
resumes operation after any power-down.
FIGURE 25-1:
CONNECTIONS FOR THE
ON-CHIP VOLTAGE
REGULATOR(1)
3.3V
PIC24H
CEFC
10 µF
Tantalum
VDD
VCAP
VSS
25.3 Brown-out Reset (BOR)
The Brown-out Reset (BOR) module is based on an
internal voltage reference circuit that monitors the
regulated supply voltage VCAP. The main purpose of
the BOR module is to generate a device Reset when a
brown-out condition occurs. Brown-out conditions are
generally caused by glitches on the AC mains (for
example, missing portions of the AC cycle waveform
due to bad power transmission lines, or voltage sags
due to excessive current draw when a large inductive
load is turned on).
A BOR generates a Reset pulse, which resets the
device. The BOR selects the clock source, based on
the device Configuration bit values (FNOSC<2:0> and
POSCMD<1:0>).
If an oscillator mode is selected, the BOR activates the
Oscillator Start-up Timer (OST). The system clock is
held until OST expires. If the PLL is used, the clock is
held until the LOCK bit (OSCCON<5>) is ‘1’.
Concurrently, the PWRT time-out (TPWRT) is applied
before the internal Reset is released. If TPWRT = 0 and
a crystal oscillator is being used, then a nominal delay
of TFSCM = 100 is applied. The total delay in this case
is TFSCM.
The BOR Status bit (RCON<1>) is set to indicate that a
BOR has occurred. The BOR circuit continues to oper-
ate while in Sleep or Idle modes and resets the device
should VDD fall below the BOR threshold voltage.
Note 1:
These are typical operating voltages. Refer
to Table 28-13, located in Section 28.1
“DC Characteristics” for the full operating
ranges of VDD and VCAP.
2: It is important for the low-ESR capacitor to
be placed as close as possible to the VCAP
pin.
© 2011 Microchip Technology Inc.
DS70293E-page 263