English
Language : 

BX80547PG3200FSL8Q6 Datasheet, PDF (70/105 Pages) Intel Corporation – Intel® Pentium® 4 Processor 6xxΔ Sequence and Intel® Pentium® 4 Processor Extreme Edition
Land Listing and Signal Descriptions
Table 4-3. Signal Description (Sheet 1 of 9)
Name
Type
Description
IERR#
IGNNE#
INIT#
ITP_CLK[1:0]
LINT[1:0]
LL_ID[1:0]
LOCK#
Output
IERR# (Internal Error) is asserted by a processor as the result of an internal
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction
on the processor FSB. This transaction may optionally be converted to an
external error signal (e.g., NMI) by system core logic. The processor keeps
IERR# asserted until the assertion of RESET#.
This signal does not have on-die termination. Refer to Section 2.5 for
termination requirements.
Input
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a
numeric error and continue to execute noncontrol floating-point instructions. If
IGNNE# is de-asserted, the processor generates an exception on a noncontrol
floating-point instruction if a previous floating-point instruction caused an error.
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
IGNNE# is an asynchronous signal. However, to ensure recognition of this
signal following an Input/Output write instruction, it must be valid along with the
TRDY# assertion of the corresponding Input/Output write bus transaction.
Input
INIT# (Initialization), when asserted, resets integer registers inside the
processor without affecting its internal caches or floating-point registers. The
processor then begins execution at the power-on Reset vector configured
during power-on configuration. The processor continues to handle snoop
requests during INIT# assertion. INIT# is an asynchronous signal and must
connect the appropriate pins/lands of all processor FSB agents.
If INIT# is sampled active on the active to inactive transition of RESET#, then
the processor executes its Built-in Self-Test (BIST).
Input
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems
where no debug port is implemented on the system board. ITP_CLK[1:0] are
used as BCLK[1:0] references for a debug port implemented on an interposer. If
a debug port is implemented in the system, ITP_CLK[1:0] are no connects in
the system. These are not processor signals.
Input
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins/lands of all
APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR,
a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable
interrupt. INTR and NMI are backward compatible with the signals of those
names on the Pentium processor. Both signals are asynchronous.
Both of these signals must be software configured via BIOS programming of the
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the
APIC is enabled by default after Reset, operation of these signals as LINT[1:0]
is the default configuration.
Output
The LL_ID[1:0] signals are used to select the correct loadline slope for the
processor. LL_ID[1:0] = 00 for the Pentium 4 processor.
Input/
Output
LOCK# indicates to the system that a transaction must occur atomically. This
signal must connect the appropriate pins/lands of all processor FSB agents. For
a locked sequence of transactions, LOCK# is asserted from the beginning of
the first transaction to the end of the last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of the
processor FSB, it will wait until it observes LOCK# de-asserted. This enables
symmetric agents to retain ownership of the processor FSB throughout the bus
locked operation and ensure the atomicity of lock.
70
Datasheet