English
Language : 

MC9S08QE16CLC Datasheet, PDF (68/350 Pages) Freescale Semiconductor, Inc – Low-power wireless applications, Gas, water and heater meters
Chapter 5 Resets, Interrupts, and System Configuration
• Illegal opcode detect
• Background debug forced reset
• The reset pin (RESET)
• Clock generator loss of lock and loss of clock reset
Each of these sources, with the exception of the background debug forced reset, has an associated bit in
the system reset status register. Whenever the MCU enters reset, the internal clock generator (ICG) module
switches to self-clocked mode with the frequency of fSelf_reset selected. The reset pin is driven low for 34
bus cycles where the internal bus frequency is half the ICG frequency. After the 34 bus cycles are
completed, the pin is released and will be pulled up by the internal pullup resistor, unless it is held low
externally. After the pin is released, it is sampled after another 38 bus cycles to determine whether the reset
pin is the cause of the MCU reset.
5.4 Computer Operating Properly (COP) Watchdog
The COP watchdog is intended to force a system reset when the application software fails to execute as
expected. To prevent a system reset from the COP timer (when it is enabled), application software must
reset the COP counter periodically. If the application program gets lost and fails to reset the COP counter
before it times out, a system reset is generated to force the system back to a known starting point.
After any reset, the COPE becomes set in SOPT enabling the COP watchdog (see Section 5.9.4, “System
Options Register (SOPT),” for additional information). If the COP watchdog is not used in an application,
it can be disabled by clearing COPE. The COP counter is reset by writing any value to the address of SRS.
This write does not affect the data in the read-only SRS. Instead, the act of writing to this address is
decoded and sends a reset signal to the COP counter.
The COPCLKS bit in SOPT2 (see Section 5.9.10, “System Options Register 2 (SOPT2),” for additional
information) selects the clock source used for the COP timer. The clock source options are either the bus
clock or an internal 1-kHz clock source. With each clock source, there is an associated short and long
time-out controlled by COPT in SOPT. Table 5-1 summaries the control functions of the COPCLKS and
COPT bits. The COP watchdog defaults to operation from the bus clock source and the associated long
time-out (218 cycles).
Table 5-1. COP Configuration Options
Control Bits
COPCLKS
COPT
Clock Source
COP Overflow Count
0
0
~1 kHz
25 cycles (32 ms)1
0
1
~1 kHz
28 cycles (256 ms)1
1
0
Bus
213 cycles
1
1
Bus
218 cycles
1 Values are shown in this column based on tRTI = 1 ms. See tRTI in the appendix
Section A.10.1, “Control Timing,” for the tolerance of this value.
MC9S08AC60 Series Data Sheet, Rev. 3
68
Freescale Semiconductor