English
Language : 

MC9S08QE16CLC Datasheet, PDF (51/350 Pages) Freescale Semiconductor, Inc – Low-power wireless applications, Gas, water and heater meters
Chapter 4 Memory
When security is enabled, the RAM is considered a secure memory resource and is not accessible through
BDM or through code executing from non-secure memory. See Section 4.5, “Security” for a detailed
description of the security feature.
4.4 FLASH
The FLASH memory is intended primarily for program storage. In-circuit programming allows the
operating program to be loaded into the FLASH memory after final assembly of the application product.
It is possible to program the entire array through the single-wire background debug interface. Because no
special voltages are needed for FLASH erase and programming operations, in-application programming
is also possible through other software-controlled communication paths. For a more detailed discussion of
in-circuit and in-application programming, refer to the HCS08 Family Reference Manual, Volume I,
Freescale Semiconductor document order number HCS08RMv1/D.
4.4.1 Features
Features of the FLASH memory include:
• FLASH Size
— MC9S08AC60 — 61268 bytes (120 pages of 512 bytes each)
— MC9S08AC48 — 49152 bytes (96 pages of 512 bytes each)
— MC9S08AC32 — 32768 bytes (64 pages of 512 bytes each)
• Single power supply program and erase
• Command interface for fast program and erase operation
• Up to 100,000 program/erase cycles at typical voltage and temperature
• Flexible block protection
• Security feature for FLASH and RAM
• Auto power-down for low-frequency read accesses
4.4.2 Program and Erase Times
Before any program or erase command can be accepted, the FLASH clock divider register (FCDIV) must
be written to set the internal clock for the FLASH module to a frequency (fFCLK) between 150 kHz and
200 kHz (see Table 4.6.1). This register can be written only once, so normally this write is done during
reset initialization. FCDIV cannot be written if the access error flag, FACCERR in FSTAT, is set. The user
must ensure that FACCERR is not set before writing to the FCDIV register. One period of the resulting
clock (1/fFCLK) is used by the command processor to time program and erase pulses. An integer number
of these timing pulses is used by the command processor to complete a program or erase command.
Table 4-5 shows program and erase times. The bus clock frequency and FCDIV determine the frequency
of FCLK (fFCLK). The time for one cycle of FCLK is tFCLK = 1/fFCLK. The times are shown as a number
of cycles of FCLK and as an absolute time for the case where tFCLK = 5 s. Program and erase times
MC9S08AC60 Series Data Sheet, Rev. 3
Freescale Semiconductor
51