English
Language : 

MC9S08AC16_08 Datasheet, PDF (326/344 Pages) Freescale Semiconductor, Inc – 8-Bit HCS08 Central Processor Unit (CPU)
Appendix A Electrical Characteristics and Timing Specifications
A.12 FLASH Specifications
This section provides details about program/erase times and program-erase endurance for the FLASH
memory.
Program and erase operations do not require any special power sources other than the normal VDD supply.
For more detailed information about program/erase operations, see Chapter 4, “Memory.”
Table A-15. FLASH Characteristics
Num C
Characteristic
Symbol
Min
Typ1
Max
Unit
1
Supply voltage for program/erase
Vprog/erase
2.7
5.5
V
2
Supply voltage for read operation
VRead
2.7
5.5
V
3
Internal FCLK frequency2
fFCLK
150
200
kHz
4
Internal FCLK period (1/FCLK)
tFcyc
5
6.67
μs
5
Byte program time (random location)(2)
tprog
9
tFcyc
6
Byte program time (burst mode)(2)
tBurst
4
tFcyc
7
Page erase time3
tPage
4000
tFcyc
8
Mass erase time(2)
tMass
20,000
tFcyc
Program/erase endurance4
9
C
TL to TH = –40°C to + 125°C
T = 25°C
10,000
—
—
cycles
—
100,000 —
10
Data retention5
tD_ret
15
100
—
years
1 Typical values are based on characterization data at VDD = 5.0 V, 25°C unless otherwise stated.
2 The frequency of this clock is controlled by a software setting.
3 These values are hardware state machine controlled. User code does not need to count cycles. This information
supplied for calculating approximate time to program and erase.
4 Typical endurance for FLASH was evaluated for this product family on the 9S12Dx64. For additional information
on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619, Typical
Endurance for Nonvolatile Memory.
5 Typical data retention values are based on intrinsic capability of the technology measured at high temperature and
de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines
typical data retention, please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.
A.13 EMC Performance
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the
MCU resides. Board design and layout, circuit topology choices, location and characteristics of external
components as well as MCU software operation all play a significant role in EMC performance. The
system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263,
AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.
MC9S08AC16 Series Data Sheet, Rev. 6
326
Freescale Semiconductor