English
Language : 

COP87L88EB Datasheet, PDF (52/72 Pages) National Semiconductor (TI) – 8-Bit CMOS OTP Microcontrollers with 16k or 32k Memory, CAN Interface, 8-Bit A/D, and USART
A/D Converter (Continued)
on for seven clock cycles. If the A/D is in single conversion
mode, the conversion complete signal from the A/D will gen-
erate a power down for the A/D converter and will clear the
ADBSY bit in the ENAD register at the next instruction cycle
boundary. If the A/D is in continuous mode, the conversion
complete signal will restart the conversion sequence by de-
selecting the A/D for one converter clock cycle before start-
ing the next sample. The A/D 8-bit result is immediately
loaded into the A/D result register (ADRSLT) upon comple-
tion. Internal logic prevents transient data (resulting from the
A/D writing a new result over an old one) being read from
ADRSLT.
Inadvertent changes to the ENAD register during conversion
are prevented by the control logic of the A/D. Any attempt to
write any bit of the ENAD Register except ADBSY, while
ADBSY is a one, is ignored. ADBSY must be cleared either
by completion of an A/D conversion or by the user before the
prescaler, conversion mode or channel select values can be
changed. After stopping the current conversion, the user can
load different values for the prescaler, conversion mode or
channel select and start a new conversion in one instruction.
It is important for the user to realize that, when used in differ-
ential mode, only the positive input to the A/D converter is
sampled and held. The negative input is constantly con-
nected and should be held stable for the duration of the con-
version. Failure to maintain a stable negative input will result
in incorrect conversion.
PRESCALER
The A/D Converter (A/D) contains a prescaler option that al-
lows four different clock selections. The A/D clock frequency
is equal to CKI divided by the prescaler value. Note that the
prescaler value must be chosen such that the A/D clock falls
within the specified range. The maximum A/D frequency is
1.67 MHz. This equates to a 600 ns A/D clock cycle.
The A/D converter takes 17 A/D clock cycles to complete a
conversion. Thus the minimum A/D conversion time for the
device is 10.2 µs when a prescaler of 6 has been selected.
The 17 A/D clock cycles needed for conversion consist of 1
cycle at the beginning for reset, 7 cycles for sampling, 8
cycles for converting, and 1 cycle for loading the result into
the A/D result register (ADRSLT). This A/D result register is a
read-only register. The user cannot write into ADRSLT.
The ADBSY flag provides an A/D clock inhibit function, which
saves power by powering down the A/D when it is not in use.
Note: The A/D converter is also powered down when the device is in either
the HALT or IDLE modes. If the A/D is running when the device enters
the HALT or IDLE modes, the A/D powers down and then restarts the
conversion with a corrupted sampled voltage (and thus an invalid re-
sult) when the device comes out of the HALT or IDLE modes.
Analog Input and Source Resistance Considerations
Figure 43 shows the A/D pin model in single ended mode.
The differential mode has a similar A/D pin model. The leads
to the analog inputs should be kept as short as possible.
Both noise and digital clock coupling to an A/D input can
cause conversion errors. The clock lead should be kept
away from the analog input line to reduce coupling. The A/D
channel input pins do not have any internal output driver cir-
cuitry connected to them because this circuitry would load
the analog input signals due to output buffer leakage current.
Source impedances greater than 3 kΩ on the analog input
lines will adversely affect the internal RC charging time dur-
ing input sampling. As shown inFigure 43, the analog switch
to the DAC array is closed only during the 7 A/D cycle
sample time. Large source impedances on the analog inputs
may result in the DAC array not being charged to the correct
voltage levels, causing scale errors.
If large source resistance is necessary, the recommended
solution is to slow down the A/D clock speed in proportion to
the source resistance. The A/D converter may be operated
at the maximum speed for RS less than 3 kΩ. For RS greater
than 3 kΩ, A/D clock speed needs to be reduced. For ex-
ample, with RS = 6 kΩ, the A/D converter may be operated
at half the maximum speed. A/D converter clock speed may
be slowed down by either increasing the A/D prescaler
divide-by or decreasing the CKI clock frquency. The A/D
minimum clock speed is 100 kHz.
*The analog switch is closed only during the sample time.
FIGURE 43. A/D Pin Model (Single Ended Mode)
DS100044-62
www.national.com
52