English
Language : 

PIC16F737-I Datasheet, PDF (83/276 Pages) Microchip Technology – 28/40/44-Pin, 8-Bit CMOS Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology
7.6 Timer1 Oscillator
A crystal oscillator circuit is built between pins T1OSI
(input) and T1OSO (amplifier output). It is enabled by
setting control bit, T1OSCEN (T1CON<3>). The oscil-
lator is a low-power oscillator, rated up to 32.768 kHz.
It will continue to run during all power-managed modes.
It is primarily intended for a 32 kHz crystal. The circuit
for a typical LP oscillator is shown in Figure 7-3.
Table 7-1 shows the capacitor selection for the Timer1
oscillator.
The user must provide a software time delay to ensure
proper oscillator start-up.
FIGURE 7-3:
EXTERNAL
COMPONENTS FOR THE
TIMER1 LP OSCILLATOR
C1
33 pF
PIC16F7X7
T1OSI
XTAL
32.768 kHz
C2
33 pF
T1OSO
Note:
See the Notes with Table 7-1 for additional
information about capacitor selection.
TABLE 7-1:
Osc Type
LP
CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR
Freq
C1
C2
32 kHz
33 pF
33 pF
Note 1: Microchip suggests this value as a starting
point in validating the oscillator circuit.
2: Higher capacitance increases the stability
of the oscillator but also increases the
start-up time.
3: Since each resonator/crystal has its own
characteristics, the user should consult
the resonator/crystal manufacturer for
appropriate values of external
components.
4: Capacitor values are for design guidance
only.
PIC16F7X7
7.7 Timer1 Oscillator Layout
Considerations
The Timer1 oscillator circuit draws very little power
during operation. Due to the low-power nature of the
oscillator, it may also be sensitive to rapidly changing
signals in close proximity.
The oscillator circuit, shown in Figure 7-3, should be
located as close as possible to the microcontroller.
There should be no circuits passing within the oscillator
circuit boundaries other than VSS or VDD.
If a high-speed circuit must be located near the oscilla-
tor, a grounded guard ring around the oscillator circuit,
as shown in Figure 7-4, may be helpful when used on
a single sided PCB or in addition to a ground plane.
FIGURE 7-4:
OSCILLATOR CIRCUIT
WITH GROUNDED
GUARD RING
VSS
OSC1
OSC2
RC0
RC1
RC2
7.8 Resetting Timer1 Using a CCP
Trigger Output
If the CCP1 module is configured in Compare mode to
generate a “special event trigger” signal
(CCP1M3:CCP1M0 = 1011), the signal will reset
Timer1 and start an A/D conversion (if the A/D module
is enabled).
Note:
The special event triggers from the CCP1
module will not set interrupt flag bit,
TMR1IF (PIR1<0>).
Timer1 must be configured for either Timer or Synchro-
nized Counter mode to take advantage of this feature.
If Timer1 is running in Asynchronous Counter mode,
this Reset operation may not work.
In the event that a write to Timer1 coincides with a
special event trigger from CCP1, the write will take
precedence.
In this mode of operation, the CCPR1H:CCPR1L
register pair effectively becomes the period register for
Timer1.
 2004 Microchip Technology Inc.
DS30498C-page 81