English
Language : 

DS89C420 Datasheet, PDF (16/59 Pages) Dallas Semiconductor – Ultra-High-Speed Microcontroller
DS89C420
For non-page mode operations, off-chip memory is accessed using the multiplexed address/data bus on
P0 and the MSB address on P2. While serving as a memory bus, these pins are not I/O ports. This
convention follows the standard 8051 method of expanding on-chip memory. Off-chip program memory
access also occurs if the EA pin is a logic 0. EA overrides all bit settings. The PSEN signal goes active
(low) to serve as a chip enable or output enable when port 0 and port 2 fetch from external program
memory.
The RD and WR signals are used to control the external data memory device. Data memory is accessed
by MOVX instructions. The MOVX@Ri instruction uses the value in the designated working register to
provide the LSB of the address, while port 2 supplies the address MSB. The MOVX@DPTR instruction
uses one of the two data pointers to move data over the entire 64kB external data memory space.
Software selects the data pointer to be used by writing to the SEL bit (DPS.0).
The DS89C420 also provides a user option for high-speed external memory access by reconfiguring the
external memory interface into page mode operation.
Note: When using the original 8051 expanded bus structure, the throughput is reduced by 75% compared
with that of internal operations. This is due to the CPU being stalled for three out of four clocks waiting
for the data fetch, which takes four clocks. Page Mode 1 is the only external addressing mode where the
CPU does not require stalls for external memory access, but page misses result in reduced external access
performance.
On-Chip Program Memory
The full on-chip program memory range can be fetched by the processor automatically. The reset routines
and all interrupt vectors are located in the lower 128 bytes of the on-chip program memory area.
On-chip program memory is logically divided into two 8kB flash memory banks and is designed to be
programmed with the standard 5V VCC supply by using a built-in program memory loader. It can also be
programmed in standard flash or EPROM programmers. The DS89C420 incorporates a memory
management unit (MMU) and other hardware to support any of the two programming methods. The
MMU controls program and data memory access, and provides sequencing and timing controls for
programming the on-chip program memory. There is also a separate security flash block that is used to
support a standard three-level lock, a 64-byte encryption array, and other flash options.
Security Features
The DS89C420 incorporates a 64-byte encryption array, allowing the user to verify program codes while
viewing the data in encrypted form. The encryption array is implemented in a security flash memory
block that has the same electrical and timing characteristics as the on-chip program memory. Once the
encryption array is programmed to non-FFh, the data presented in the verify mode is encrypted. Each
byte of data is XNOR’ed with a byte in the encryption array during verification.
A three-level lock restricts viewing of the internal program and data memory contents. By programming
the three lock bits, the user can select a level of security as specified in Table 4. Once a security level is
selected and programmed, the setting of the lock bits remains. Only a mass erase can erase these bits to
allow reprogramming the security level to a less restricted protection.
16 of 59