English
Language : 

LM3S2276 Datasheet, PDF (163/785 Pages) Texas Instruments – Stellaris® LM3S2276 Microcontroller
Stellaris® LM3S2276 Microcontroller
4.3.4.1
GPIO Functionality
When the controller is reset with either a POR or RST, the JTAG/SWD port pins default to their
JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting
GPIODEN to 1), enabling the pull-up resistors (setting GPIOPUR to 1), and enabling the alternate
hardware function (setting GPIOAFSEL to 1) for the PC[3:0] JTAG/SWD pins.
It is possible for software to configure these pins as GPIOs after reset by writing 0s to PC[3:0] in
the GPIOAFSEL register. If the user does not require the JTAG/SWD port for debugging or
board-level testing, this provides four more GPIOs for use in the design.
Caution – It is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris microcontroller. If the program code loaded into flash immediately changes the JTAG pins
to their GPIO functionality, the debugger may not have enough time to connect and halt the controller
before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be
avoided with a software routine that restores JTAG functionality based on an external or software
trigger.
The GPIO commit control registers provide a layer of protection against accidental programming of
critical hardware peripherals. Protection is currently provided for the NMI pin (PB7) and the four
JTAG/SWD pins (PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select
(GPIOAFSEL) register (see page 368), GPIO Pull-Up Select (GPIOPUR) register (see page 374),
and GPIO Digital Enable (GPIODEN) register (see page 377) are not committed to storage unless
the GPIO Lock (GPIOLOCK) register (see page 379) has been unlocked and the appropriate bits
of the GPIO Commit (GPIOCR) register (see page 380) have been set to 1.
Recovering a "Locked" Device
Note:
Performing the sequence below causes the nonvolatile registers discussed in “Nonvolatile
Register Programming” on page 261 to be restored to their factory default values. The mass
erase of the flash memory caused by the below sequence occurs prior to the nonvolatile
registers being restored.
If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate
with the debugger, there is a debug sequence that can be used to recover the device. Performing
a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset
mass erases the flash memory. The sequence to recover the device is:
1. Assert and hold the RST signal.
2. Perform the JTAG-to-SWD switch sequence.
3. Perform the SWD-to-JTAG switch sequence.
4. Perform the JTAG-to-SWD switch sequence.
5. Perform the SWD-to-JTAG switch sequence.
6. Perform the JTAG-to-SWD switch sequence.
7. Perform the SWD-to-JTAG switch sequence.
8. Perform the JTAG-to-SWD switch sequence.
9. Perform the SWD-to-JTAG switch sequence.
November 17, 2011
163
Texas Instruments-Production Data