English
Language : 

CC2520_11 Datasheet, PDF (50/133 Pages) Texas Instruments – 2.4 GHZ IEEE 802.15.4/ZIGBEE RF TRANSCEIVER
CC2520 DATASHEET
2.4 GHZ IEEE 802.15.4/ZIGBEE® RF TRANSCEIVER
SWRS068 – DECEMBER 2007
OPCODE
UCBCMAC
CCM
Inputs Outputs
p
k[7:0]
c[6:0]
a[11:0]
m[2:0]
s[7:0]
p
k[7:0]
c[6:0]
n[7:0]
a[11:0]
e[11:0]
f[6:0]
m[1:0]
s[7:0]
Description
Possible exceptions
Reverse authentication instruction using CBC-MAC
security. Process C bytes of plaintext starting at address
A, using the key stored at address (16⋅K)
The priority of the instruction is defined by P, which is
either low (if P=0) or high (if P=1).
MEMADDR_ERROR
USAGE_ERROR
DPU_DONE_L
DPU_DONE_H
The instruction generates 4, 8, or 16 bytes of integrity
code (for M[1:0] equals 1, 2 or 3 respectively) and
compares them to the received integrity code at address
(A + C). The result (pass / fail) is stored in the AUTHSH /
AUTHSL status bits for high / low priority security
operations respectively. For M[1:0]=0, no integrity code
checking is performed and the result will always be
‘pass’.
If M[2]=0, the plaintext data to be authenticated is
automatically prefixed with C, as used in IEEE 802.15.4-
2003.
If M[2]=1, the plaintext data is not prefixed with C. This
mode can be used for backwards compatibility with
existing systems.
A USAGE_ERROR exception is raised if an instruction is
already active with the requested priority level (high or
low).
A DPU_DONE_L or DPU_DONE_H exception is raised
when the operation completes, depending on the priority
of the instruction. This happens regardless of whether
the operation was successful or not.
Encryption and authentication instruction using CCM /
CCM* security. Authenticate F bytes of plaintext starting
at address A. Authenticate and encrypt C bytes starting
at address (A+F). Use the key stored at address (16⋅K),
the counter starting at address (16⋅N) and storing the
output starting at address E.
MEMADDR_ERROR
USAGE_ERROR
DPU_DONE_L
DPU_DONE_H
The priority of the instruction is defined by P, which is
either low (if P=0) or high (if P=1).
If the destination address E provided in the instruction
equals zero, the destination address E is set equal to
(A+F), thereby replacing the last C bytes of plaintext with
the ciphertext and the integrity code.
The output is C encrypted bytes followed by 0, 4, 8 or 16
bytes of integrity code for M equals 0, 1, 2 or 3
respectively.
A USAGE_ERROR exception is raised if an instruction is
already active with the requested priority level (high or
low).
A USAGE_ERROR exception is also raised if ((C+F) >
128).
A DPU_DONE_L or DPU_DONE_H exception is raised
when the operation completes, depending on the priority
of the instruction. This happens regardless of whether
the operation was successful or not.
50
WWW.TI.COM