English
Language : 

MAX11008 Datasheet, PDF (40/67 Pages) Maxim Integrated Products – Dual RF LDMOS Bias Controller with Nonvolatile Memory
Dual RF LDMOS Bias Controller with
Nonvolatile Memory
EEPROM
The MAX11008 features 4Kb of EEPROM capable of
storing up to 256 16-bit data words. The first 64 data
words of the EEPROM contain configuration data (see
Table 4) while the remaining 192 data words are pro-
grammable and used for storing temperature and APC
LUTs. The MAX11008 utilizes the LUT values to perform
gate voltage calculations (see the VGATE_ Output
Equation section). See the First-In-First-Out (FIFO), LUT
Streaming Mode, and Message Mode sections for more
information on how to program and read from the
EEPROM. See the Temperature/APC LUT Configuration
Registers section for information on how to configure
the LUTs and how values are retrieved from the LUTs
for VGATE_ calculations. See Table 5.
Nonvolatile Initialization Values
Upon power-on reset, the data contained within specif-
ic EEPROM locations is copied directly to correspond-
ing locations within the register address map
depending on the state of the magic number (see the
Magic Number section).
• Locations 0x10–0x1F are directly copied to their cor-
responding locations within the register address
map.
• Locations 0x2C–0x33 are conditionally copied to
their corresponding locations within the register
address map. Set the MSB (labeled WCTRAM) to 1
for locations 0x2C–0x33 to be copied to the register
address map (see Table 4a).
By correctly configuring the initialization values stored
within the EEPROM, the MAX11008 can automatically
enter VGATE_ compensation mode without the need for
a host processor. This autonomous operation is useful
in some application areas where a host controller is not
desired.
Changes made to the working registers during opera-
tion are volatile. To change a register’s nonvolatile ini-
tialization value, the corresponding EEPROM location
must be written by the LUT streaming protocol.
Magic Number
The address location 0x37 of the EEPROM is referred
to as the magic address. If the magic address is pro-
grammed with the magic number (0xAA55), the values
stored in address locations 0x10–0x1F and 0x2C–0x33
are loaded into the working registers (see the Register
Address Map section) during power-up initialization.
Address locations 0x10–0x1F are unconditionally
loaded into the working registers, whereas address
locations 0x2C–0x33 are only loaded if bit D15
(WCTRAM) of the address is set to 1. If magic address
location 0x37 is not programmed with the magic num-
ber (0xAA55), the EEPROM is determined to be unpro-
grammed; the power-up initialization load is then
bypassed and the working registers default to their
power-on reset value.
LUT Values
The values stored within the LUT section of the
EEPROM are 16-bit signed (two’s complement)
Table 4a. EEPROM Address Bit Map
HEX
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1D
1E
1F
1F
2C
2D
2E
2F
30
31
32
33
37
3C
3D
3E
3F
MNEMONIC
EE_TH1
EE_TL1
EE_IH1
EE_IL1
EE_TH2
EE_TL2
EE_IH2
EE_IL2
EE_HCFIG
EE_ALMSCF
EE_SCFIG
EE_ALMHCF
EE_VSET1
EE_HIST_AP
EE_HIST_AP
EE_VSET2
EE_HIST_AP
EE_HIST_AP
EE_IDAC1
EE_IODAC1
EE_IDAC2
EE_IODAC2
EE_PGACAL
EE_ADCCON
EE_SSHUT
EE_LDAC
MAGIC NUMBER
EE_TLUT1
EE_ALUT1
EE_TLUT2
EE_ALUT2
TABLE
7
8
9
10
7
8
9
10
11
12
13
14
15
16a
16b
15
16a
16b
17
18
17
18
19
20
21
22
—
5
5
5
5
BIT 15
X
X
X
X
X
X
X
X
T1AVGCTL
X
T2AVGCTL
X
X
T1HIST3
T1HIST3
X
T1HIST3
T2HIST3
WCTRAM
WCTRAM
WCTRAM
WCTRAM
WCTRAM
WCTRAM
WCTRAM
WCTRAM
1
POFF5
POFF5
POFF5
POFF5
BIT 14
X
X
X
X
X
X
X
X
T1LIMIT2
X
T2LIMIT2
X
X
T1HIST2
T1HIST2
X
T1HIST2
T2HIST2
X
X
X
X
X
X
X
X
0
POFF4
POFF4
POFF4
POFF4
BIT 13
X
X
X
X
X
X
X
X
T1LIMIT1
X
T2LIMIT1
X
X
T1HIST1
T1HIST1
X
T1HIST1
T2HIST2
X
X
X
X
X
X
X
X
1
POFF3
POFF3
POFF3
POFF3
BIT 12
X
X
X
X
X
X
X
X
T1LIMIT0
X
T1LIMIT0
X
X
T1HIST0
T1HIST0
X
T1HIST0
T2HIST0
X
X
X
X
X
X
X
X
0
POFF2
POFF2
POFF2
POFF2
BIT 11
D11
D11
D11
D11
D11
D11
D11
D11
FIFOSTAT
A2AVG
LDAC2
X
D11
D11
X
D11
D11
X
D11
D11
D11
D11
X
X
X
X
1
POFF1
POFF1
POFF1
POFF1
BIT 10
D10
D10
D10
D10
D10
D10
D10
D10
ADCMON
T2AVG
TCOMP2
AVGMON
D10
D10
X
D10
D10
X
D10
D10
D10
D10
X
X
X
X
0
POFF0
POFF0
POFF0
POFF0
BIT 9
D9
D9
D9
D9
D9
D9
D9
D9
PG2SET1
A1AVG
APCCOMP2
INTEMP2
D9
D9
X
D9
D9
X
D9
D9
D9
D9
X
X
X
X
1
INT1
INT1
INT1
INT1
BIT 8
D8
D8
D8
D8
D8
D8
D8
D8
PG2SET0
T1AVG
TSRC2
ALMCMP
D8
D8
X
D8
D8
X
D8
D8
D8
D8
X
X
X
X
0
INT0
INT0
INT0
INT0
BIT 7
D7
D7
D7
D7
D7
D7
D7
D7
PG1SET1
TALARM2
APCSRC21
ALMHYST1
D7
D7
A1AVGCTL
D7
D7
A2AVGCTL
D7
D7
D7
D7
X
CONCONV
X
X
0
PSIZE1
PSIZE1
PSIZE1
PSIZE1
BIT 6
D6
D6
D6
D6
D6
D6
D6
D6
PG1SET1
TWIN2
APCSRC20
ALMHYST0
D6
D6
A1LIMIT2
D6
D6
A2LIMIT2
D6
D6
D6
D6
X
ADCIN2
X
X
1
PSIZE0
PSIZE0
PSIZE0
PSIZE0
BIT 5
D5
D5
D5
D5
D5
D5
D5
D5
CKSEL1
IALARM2
LDAC1
ALMCLMP21
D5
D5
A1LIMIT1
D5
D5
A2LIMIT1
D5
D5
D5
D5
X
CS2
X
X
0
TSIZE2
TSIZE2
TSIZE2
TSIZE2
BIT 4
D4
D4
D4
D4
D4
D4
D4
D4
CKSEL0
IWIN2
TCOMP1
ALMCLMP20
D4
D4
A1LIMIT0
D4
D4
A2LIMIT0
D4
D4
D4
D4
X
EXTTEMP2
X
X
1
TSIZE1
TSIZE1
TSIZE1
TSIZE1
BIT 3
D3
D3
D3
D3
D3
D3
D3
D3
ADCREF1
TALARM1
APCCOMP1
ALMCLMP11
D3
D3
A1HIST3
D3
D3
A2HIST3
D3
D3
D3
D3
X
ADCIN1
FBGON
X
0
TSIZE0
TSIZE0
TSIZE0
TSIZE0
BIT 2
D2
D2
D2
D2
D2
D2
D2
D2
ADCREF0
TWIN1
TSRC1
ALMCLMP10
D2
D2
A1HIST2
D2
D2
A2HIST2
D2
D2
D2
D2
TRACK
CS1
OSCPD
X
1
SOT2
SOT2
SOT2
SOT2
BIT 1
D1
D1
D1
D1
D1
D1
D1
D1
DACREF1
IALARM1
APCSRC11
ALMPOL
D1
D1
A1HIST1
D1
D1
A2HIST1
D1
D1
D1
D1
DOCAL
EXTEMP1
DAC2PD
DAC_CH2
0
SOT1
SOT1
SOT1
SOT1
BIT 0
D0
D0
D0
D0
D0
D0
D0
D0
DACREF0
IWIN1
APCSRC10
ALMOPN
D0
D0
A1HIST0
D0
D0
A2HIST0
D0
D0
D0
D0
SELFTIME
INTEMP
DAC1PD
DAC_CH1
1
SOT0
SOT0
SOT0
SOT0
40 ______________________________________________________________________________________