English
Language : 

K20P144M120SF3_1210 Datasheet, PDF (49/86 Pages) Freescale Semiconductor, Inc – K20 Sub-Family
Peripheral operating requirements and behaviors
Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
EIL
Input leakage
error
IIn × RAS
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and current
operating
ratings)
Temp sensor
slope
Across the full temperature
range of the device
—
1.715
—
mV/°C
VTEMP25 Temp sensor
voltage
25 °C
—
719
—
mV
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).
For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock
speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
Figure 20. Typical ENOB vs. ADC_CLK for 16-bit differential mode
K20 Sub-Family Data Sheet, Rev. 4, 10/2012.
Freescale Semiconductor, Inc.
49