English
Language : 

CC2500_06 Datasheet, PDF (22/84 Pages) Texas Instruments – Single Chip Low Cost Low Power RF Transceiver
CC2500
burst bit in the address header. The address
sets the start address in an internal address
counter. This counter is incremented by one
each new byte (every 8 clock pulses). The
burst access is either a read or a write access
and must be terminated by setting CSn high.
For register addresses in the range 0x30-
0x3D, the “burst” bit is used to select between
status registers and command strobes (see
below). The status registers can only be read.
Burst read is not available for status registers,
so they must be read one at a time.
10.3 SPI Read
When reading register fields over the SPI
interface while the register fields are updated
by the radio hardware (e.g. MARCSTATE or
TXBYTES), there is a small, but finite,
probability that a single read from the register
is being corrupt. As an example, the
probability of any single read from TXBYTES
being corrupt, assuming the maximum data
rate is used, is approximately 80 ppm. Refer to
the CC2500 Errata Note for more details.
10.4 Command Strobes
Command strobes may be viewed as single
byte instructions to CC2500. By addressing a
command strobe register, internal sequences
will be started. These commands are used to
disable the crystal oscillator, enable receive
mode, enable wake-on-radio etc. The 14
command strobes are listed in Table 34 on
page 51.
The command strobe registers are accessed
in the same way as for a register write
operation, but no data is transferred. That is,
only the R/W bit (set to 0), burst access (set to
0) and the six address bits (in the range 0x30
through 0x3D) are written.
When writing command strobes, the status
byte is sent on the SO pin.
A command strobe may be followed by any
other SPI access without pulling CSn high.
After issuing an SRES command strobe the
next command strobe can be issued when the
SO pin goes low as shown in Figure 9. The
command strobes are executed immediately,
with the exception of the SPWD and the SXOFF
strobes that are executed when CSn goes
high.
Figure 9: SRES command strobe
10.5 FIFO Access
The 64-byte TX FIFO and the 64-byte RX
FIFO are accessed through the 0x3F address.
When the read/write bit is zero, the TX FIFO is
accessed, and the RX FIFO is accessed when
the read/write bit is one.
The TX FIFO is write-only, while the RX FIFO
is read-only.
The burst bit is used to determine if FIFO
access is single byte or a burst access. The
single byte access method expects address
with burst bit set to zero and one data byte.
After the data byte a new address is expected;
hence, CSn can remain low. The burst access
method expects one address byte and then
consecutive data bytes until terminating the
access by setting CSn high.
The following header bytes access the FIFOs:
• 0x3F: Single byte access to TX FIFO
• 0x7F: Burst access to TX FIFO
• 0xBF: Single byte access to RX FIFO
• 0xFF: Burst access to RX FIFO
When writing to the TX FIFO, the status byte
(see Section 10.1) is output for each new data
byte on SO, as shown in Figure 7. This status
byte can be used to detect TX FIFO underflow
while writing data to the TX FIFO. Note that
the status byte contains the number of bytes
free before writing the byte in progress to the
TX FIFO. When the last byte that fits in the TX
FIFO is transmitted to the SI pin, the status
byte received concurrently on the SO pin will
indicate that one byte is free in the TX FIFO.
The transmit FIFO may be flushed by issuing a
SFTX command strobe. Similarly, a SFRX
command strobe will flush the receive FIFO. A
SFTX or SFRX command strobe can only be
issued in the IDLE, TXFIFO_UNDERLOW or
RXFIFO_OVERFLOW state. Both FIFOs are
flushed when going to the SLEEP state.
PRELIMINARY Data Sheet (Rev.1.2) SWRS040A
Page 22 of 83