English
Language : 

MAX11014_08 Datasheet, PDF (66/70 Pages) Maxim Integrated Products – Automatic RF MESFET Amplifier Drain-Current Controllers
Automatic RF MESFET Amplifier
Drain-Current Controllers
Applications Information
Layout Considerations
For the external temperature sensor to perform to spec-
ifications, care must be taken to place the MAX11014/
MAX11015 as close as is practical to the remote diode.
Traces of DXP_ and DXN_ should not be routed across
noisy lines and buses. DXP_ and DXN_ routes should
be guarded by ground traces on either sides and
should be routed over a quiet ground plane. Traces
should be wide enough (> 10mm) to lower inductance,
which tends to pick up radiated noise.
Definitions
Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values
on an actual transfer function from a straight line. This
straight line can be either a best-straight-line fit or a line
drawn between the endpoints of the transfer function,
once offset and gain errors have been nullified. INL for
the MAX11014/MAX11015 is measured using the end-
point method.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between
an actual step width and the ideal value of 1 LSB. A
DNL error specification of less than 1 LSB guarantees no
missing codes and a monotonic transfer function.
ADC Offset Error
For an ideal converter, the first transition occurs at 0.5
LSB, above zero. Offset error is the amount of deviation
between the measured first transition point and the
ideal first transition point.
ADC Gain Error
When a positive full-scale voltage is applied to the con-
verter inputs, the digital output is all ones (FFFh). The
transition from FFEh to FFFh occurs at 1.5 LSB below
full scale. Gain error is the amount of deviation between
the measured full-scale transition point and the ideal
full-scale transition point with the offset error removed.
DAC Offset Error
DAC offset error is determined by loading a code of all
zeros into the DAC and measuring the analog output
voltage.
DAC Gain Error
DAC gain error is defined as the amount of deviation
between the ideal transfer function and the measured
transfer function, with the offset error removed, when
loading a code of all 1s into the DAC.
Aperture Jitter
Aperture jitter, tAJ, is the statistical distribution of the
variation in the sampling instant.
Aperture Delay
Aperture delay (tAD) is the time between the rising
edge of the sampling clock and the instant when an
actual sample is taken.
Signal-to-Noise Ratio
For a waveform perfectly reconstructed from digital
samples, signal-to-noise ratio (SNR) is the ratio of full-
scale analog input (RMS value) to the RMS quantization
error (residual error). The ideal, theoretical minimum
analog-to-digital noise is caused by quantization error
only and results directly from the ADC’s resolution
(N bits):
SNR = (6.02 x N + 1.76)dB
In reality, there are other noise sources besides quanti-
zation noise, including thermal noise, reference noise,
clock jitter, etc. Therefore, SNR is calculated by taking
the ratio of the RMS signal to the RMS noise. RMS noise
includes all spectral components to the Nyquist fre-
quency excluding the fundamental, the first five har-
monics, and the DC offset.
Signal-to-Noise Plus Distortion
Signal-to-noise plus distortion (SINAD) is the ratio of the
fundamental input frequency’s RMS amplitude to the
RMS noise plus distortion. RMS noise plus distortion
includes all spectral components to the Nyquist fre-
quency excluding the fundamental and the DC offset:
SINAD (dB) = 20 x log (SIGNALRMS / NOISERMS)
Effective Number of Bits
Effective number of bits (ENOB) indicates the global
accuracy of an ADC at a specific input frequency and
sampling rate. An ideal ADC’s error consists of quanti-
zation noise only. With an input range equal to the full-
scale range of the ADC, calculate the effective number
of bits as follows:
ENOB = (SINAD − 1.76) / 6.02
Total Harmonic Distortion
Total harmonic distortion (THD) is the ratio of the RMS
sum of the first five harmonics of the input signal to the
fundamental itself. This is expressed as:
66 ______________________________________________________________________________________