English
Language : 

COP888CL Datasheet, PDF (14/42 Pages) Texas Instruments – COP888CL 8-Bit Microcontroller
Pin Descriptions (Continued)
PORT L is an 8-bit I/O port. All L-pins have Schmitt triggers
on the inputs.
Port L supports Multi-Input Wakeup (MIWU) on all eight pins.
L4 and L5 are used for the timer input functions T2A and
T2B.
Port L has the following alternate features:
L0 MIWU
L1 MIWU
L2 MIWU
L3 MIWU
L4 MIWU or T2A
L5 MIWU or T2B
L6 MIWU
L7 MIWU
Port G is an 8-bit port with 5 I/O pins (G0, G2–G5), an input
pin (G6), and two dedicated output pins (G1 and G7). Pins
G0 and G2–G6 all have Schmitt Triggers on their inputs. Pin
G1 serves as the dedicated WDOUT WATCHDOG output,
while pin G7 is either input or output depending on the
oscillator mask option selected. With the crystal oscillator
option selected, G7 serves as the dedicated output pin for
the CKO clock output. With the single-pin R/C oscillator
mask option selected, G7 serves as a general purpose input
pin, but is also used to bring the device out of HALT mode
with a low to high transition. There are two registers associ-
ated with the G Port, a data register and a configuration
register. Therefore, each of the 5 I/O bits (G0, G2–G5) can
be individually configured under software control.
Since G6 is an input only pin and G7 is the dedicated CKO
clock output pin or general purpose input (R/C clock configu-
ration), the associated bits in the data and configuration
registers for G6 and G7 are used for special purpose func-
tions as outlined below. Reading the G6 and G7 data bits will
return zeros.
Note that the chip will be placed in the HALT mode by writing
a “1” to bit 7 of the Port G Data Register. Similarly the chip
will be placed in the IDLE mode by writing a “1” to bit 6 of the
Port G Data Register.
Writing a “1” to bit 6 of the Port G Configuration Register
enables the MICROWIRE/PLUS to operate with the alter-
nate phase of the SK clock. The G7 configuration bit, if set
high, enables the clock start up delay after HALT when the
R/C clock configuration is used.
Config Reg.
Data Reg.
G7
CLKDLY
HALT
G6
Alternate SK
IDLE
Port G has the following alternate features:
G0 INTR (External Interrupt Input)
G2 T1B (Timer T1 Capture Input)
G3 T1A (Timer T1 I/O)
G4 SO (MICROWIRE Serial Data Output)
G5 SK (MICROWIRE Serial Clock)
G6 SI (MICROWIRE Serial Data Input)
Port G has the following dedicated functions:
G1 WDOUT WATCHDOG and/or Clock Monitor dedi-
cated output
G7 CKO Oscillator dedicated output or general purpose
input
Port C is an 8-bit I/O port. The 40-pin device does not have
a full complement of Port C pins. The unavailable pins are
not terminated. A read operation for these unterminated pins
will return unpredictable values.
Port I is an 8-bit Hi-Z input port. The 40-pin device does not
have a full complement of Port I pins. Pins 15 and 16 on this
package must be connected to GND.
The 28-pin device has four I pins (I0, I1, I4, I5). The user
should pay attention when reading port I to the fact that I4
and I5 are in bit positions 4 and 5 rather than 2 and 3.
The unavailable pins (I4–I7) are not terminated i.e., they are
floating. A read operation for these unterminated pins will
return unpredictable values. The user must ensure that the
software takes into account by either masking or restricting
the accesses to bit operations. The unterminated port I pins
will draw power only when addressed.
Port D is an 8-bit output port that is preset high when RESET
goes low. The user can tie two or more D port outputs
(except D2) together in order to get a higher drive.
Note: Care must be exercised with the D2 pin operation. At RESET, the
external loads on this pin must ensure that the output voltages stay
above 0.8 VCC to prevent the chip from entering special modes. Also
keep the external loading on D2 to less than 1000 pF.
Functional Description
The architecture of the device is modified Harvard architec-
ture. With the Harvard architecture, the control store pro-
gram memory (ROM) is separated from the data store
memory (RAM). Both ROM and RAM have their own sepa-
rate addressing space with separate address buses. The
architecture, though based on Harvard architecture, permits
transfer of data from ROM to RAM.
CPU REGISTERS
The CPU can do an 8-bit addition, subtraction, logical or shift
operation in one instruction (tc) cycle time.
There are five CPU registers:
A is the 8-bit Accumulator Register
PC is the 15-bit Program Counter Register
PU is the upper 7 bits of the program counter (PC)
PL is the lower 8 bits of the program counter (PC)
B is an 8-bit RAM address pointer, which can be optionally
post auto incremented or decremented.
X is an 8-bit alternate RAM address pointer, which can be
optionally post auto incremented or decremented.
SP is the 8-bit stack pointer, which points to the subroutine/
interrupt stack (in RAM). The SP is initialized to RAM ad-
dress 06F with reset.
All the CPU registers are memory mapped with the excep-
tion of the Accumulator (A) and the Program Counter (PC).
PROGRAM MEMORY
Program memory consists of 4096 bytes of ROM. These
bytes may hold program instructions or constant data (data
tables for the LAID instruction, jump vectors for the JID
instruction, and interrupt vectors for the VIS instruction). The
program memory is addressed by the 15-bit program
counter (PC). All interrupts vector to program memory loca-
tion 0FF Hex.
13
www.national.com