English
Language : 

M306V5ME-XXXSP Datasheet, PDF (64/263 Pages) Mitsubishi Electric Semiconductor – SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER
MITSUBISHI MICROCOMPUTERS
M306V5ME-XXXSP
M306V5EESP
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER
and ON-SCREEN DISPLAY CONTROLLER
2.9.1 Transfer Cycle
The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area
(source read) and the bus cycle in which the data is written to memory or to the SFR area (destination
write). The number of read and write bus cycles depends on the source and destination addresses. Also,
the bus cycle itself is longer when software waits are inserted.
(1) Effect of source and destination addresses
When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd
addresses, there are one more source read cycle and destination write cycle than when the source
and destination both start at even addresses.
(2) Effect of software wait
When the SFR area or a memory area with a software wait is accessed, the number of cycles is
increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.
Figure 2.9.8 shows the example of the transfer cycles for a source read. For convenience, the destination
write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In
reality, the destination write cycle is subject to the same conditions as the source read cycle, with the
transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respec-
tive conditions to both the destination write cycle and the source read cycle.
Rev. 1.0
63