English
Language : 

PIC24F04KA201 Datasheet, PDF (57/224 Pages) Microchip Technology – 14/20-Pin General Purpose, 16-Bit Flash Microcontrollers with nanoWatt XLP™ Technology
PIC24F04KA201 FAMILY
6.3 Brown-out Reset (BOR)
The PIC24F04KA201 family devices implement a BOR
circuit, which provides the user several configuration
and power-saving options. The BOR is controlled by
the <BORV1:BORV0> and (BOREN<1:0>) Configura-
tion bits (FPOR<6:5,1:0>). There are a total of four
BOR configurations, which are provided in Table 6.3.1.
The BOR threshold is set by the BORV<1:0> bits. If
BOR is enabled (any values of BOREN<1:0>, except
‘00’), any drop of VDD below the set threshold point will
reset the device. The chip will remain in BOR until VDD
rises above threshold.
If the Power-up Timer is enabled, it will be invoked after
VDD rises above the threshold; it, then, will keep the chip
in Reset for an additional time delay, TPWRT, if VDD drops
below the threshold while the power-up timer is running.
The chip goes back into a BOR and the Power-up Timer
will be initialized. Once VDD rises above the threshold,
the Power-up Timer will execute the additional time
delay.
BOR and the Power-up Timer are independently
configured. Enabling the BOR Reset does not
automatically enable the PWRT.
6.3.1 SOFTWARE ENABLED BOR
When BOREN<1:0> = 01, the BOR can be enabled or
disabled by the user in software. This is done with the
control bit, SBOREN (RCON<13>). Setting SBOREN
enables the BOR to function as previously described.
Clearing the SBOREN disables the BOR entirely. The
SBOREN bit operates only in this mode; otherwise, it is
read as ‘0’.
Placing BOR under software control gives the user the
additional flexibility of tailoring the application to its
environment without having to reprogram the device to
change the BOR configuration. It also allows the user
to tailor the incremental current that the BOR con-
sumes. While the BOR current is typically very small, it
may have some impact in low-power applications.
Note:
Even when the BOR is under software
control, the BOR Reset voltage level is still
set by the BORV1:BORV0 Configuration
bits. It can not be changed in software.
6.3.2 DETECTING BOR
When BOR is enabled, the BOR bit (RCON<1>) is
always reset to ‘1’ on any BOR or POR event. This
makes it difficult to determine if a BOR event has
occurred just by reading the state of BOR alone. A
more reliable method is to simultaneously check the
state of both POR and BOR. This assumes that the
POR and BOR bits are reset to ‘0’ in the software
immediately after any POR event. If the BOR bit is ‘1’
while POR is ‘0’, it can be reliably assumed that a BOR
event has occurred.
Note:
Even when the device exits from Deep
Sleep mode, both the POR and BOR are
set.
6.3.3 DISABLING BOR IN SLEEP MODE
When BOREN<1:0> = 10, BOR remains under hard-
ware control and operates as previously described.
However, whenever the device enters Sleep mode,
BOR is automatically disabled. When the device
returns to any other operating mode, BOR is
automatically re-enabled.
This mode allows for applications to recover from
brown-out situations, while actively executing code,
when the device requires BOR protection the most. At
the same time, it saves additional power in Sleep mode
by eliminating the small incremental BOR current.
6.3.4 DEEP SLEEP BOR (DSBOR)
Deep Sleep BOR is a very low-power BOR circuitry.
Due to low current consumption, accuracy may vary.
DSBOR occurs anywhere between 1.55V and 1.95V.
DSBOR is selected in configuration through the
BORV<1:0> (FPOR<6:5>) bits = 00.
DSBOR re-arms the POR anywhere between 1.55V
and 1.95V; however, below 1.55V, the POR is asserted.
© 2009 Microchip Technology Inc.
Preliminary
DS39937B-page 55