English
Language : 

V-SERIES Datasheet, PDF (16/45 Pages) Keysight Technologies – Infiniium V-Series Oscilloscopes
16 | Keysight | Infiniium V-Series Oscilloscopes - Data Sheet
Industry’s Most Comprehensive Software (Continued)
Gain insight into the causes of signal jitter to ensure your design has high reliability
With faster edge speeds and shrinking data-valid windows in today’s high-speed digital designs, insight into the causes of jitter has
become critical for success. Using EZJIT and EZJIT Plus jitter analysis software, the Infiniium V-Series helps you identify and quantify
jitter components that affect the reliability of your design. Time correlation of jitter to the real-time signal makes it easy to trace
jitter components to their sources. Additional compliance presets and a setup wizard simplify and automate RJ/DJ separation for
testing against industry standards. EZJIT Plus automatically detects embedded clock frequencies and repetitive data patterns on the
oscilloscope inputs and calculates the level of data-dependent jitter (DDJ) that contributes to the total jitter (TJ) by each transition in
the pattern, a feature unique to Infiniium oscilloscopes.
Real-time eye and clock recovery
Serial data analysis (SDA) software provides flexible clock
recovery including 1st- and 2nd-order PLL, explicit and constant
clock. With a stable clock, you can look at real-time eyes of
transition and non-transition bits. V-Series oscilloscopes with
SDA software also provide a unique view of bits preceding an
eye.
Measurement trends and jitter spectrum
The EZJIT tool helps you quickly analyze the causes of jitter.
Measurement trends allow you to see deeper views of factors
affecting measurements. Jitter spectrum is a fast method to find
the causes of jitter. The trend also allows you to characterize
spread spectrum clock (SSC) if it meets frequency and
modulation deviation requirements.
Two ways to separate jitter
EZJIT Plus comes with two ways to separate jitter: the industry-
standard spectral method and the emerging tail-fit method. Both
methods allow for simple separation of RJ and DJ, but the tail-fit
method provides jitter separation in the unique case of non-
symmetrical histograms and aperiodic bounded uncorrelated
jitter (ABUJ).
Extract measurement trend from the signal for SSC characterization.
Unique RJ/DJ threshold view
EZJIT Plus also provides a unique spectral view of the jitter
spectrum with the threshold drawn on the chart. The spectral
view provides insight into the decision point of the separation and
allows for narrow or wide, tail-fit, or dual-dirac.
Tools to determine the correct settings
SDA, EZJIT, and EZJIT Plus come with an array of visual tools
to make analyzing the data simple and ensure that the correct
settings are chosen for difficult design decisions. For example,
the improved bathtub curve is a helpful visual tool to determine
which jitter separation method best fits the data.
Multiple jitter analysis plots for enhanced visualization.