English
Language : 

ISL6308A Datasheet, PDF (15/28 Pages) Intersil Corporation – Three-Phase Buck PWM Controller with High Current Integrated MOSFET Drivers
ISL6308A
negative swing at the PHASE node. This reduces voltage
stress on the boot to phase pins.
The bootstrap capacitor must have a maximum voltage
rating above PVCC + 5V and its capacitance value can be
chosen from Equation 11:
CBOOT_CAP ≥ Δ-----V----B-Q---O--G--O--A---T-T--_-E--C----A----P-
(EQ. 11)
QGATE=
Q-----G-----1----•--P----V-----C----C---
VGS1
•
N
Q
1
where QG1 is the amount of gate charge per upper MOSFET
at VGS1 gate-source voltage and NQ1 is the number of
control MOSFETs. The ΔVBOOT_CAP term is defined as the
allowable droop in the rail of the upper gate drive. Figure 10
shows the boot capacitor ripple voltage as a function of boot
capacitor value and total upper MOSFET gate charge.
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2 20nC
QGATE = 100nC
50nC
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ΔVBOOT_CAP (V)
FIGURE 10. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE
VOLTAGE
Gate Drive Voltage Versatility
The ISL6308A provides the user flexibility in choosing the
gate drive voltage for efficiency optimization. The controller
ties the upper and lower drive rails together. Simply applying
a voltage from 5V up to 12V on PVCC sets both gate drive
rail voltages simultaneously.
Initialization
Prior to initialization, proper conditions must exist on the
ENLL, VCC, PVCC and the REF0 and REF1 pins. When the
conditions are met, the controller begins soft-start. Once the
output voltage is within the proper window of operation, the
controller asserts PGOOD.
Enable and Disable
While in shutdown mode, the PWM outputs are held in a
high-impedance state to assure the drivers remain off. The
following input conditions must be met before the ISL6308A
is released from shutdown mode.
1. The bias voltage applied at VCC must reach the internal
power-on reset (POR) rising threshold. Once this
threshold is reached, proper operation of all aspects of
the ISL6308A is guaranteed. Hysteresis between the
rising and falling thresholds assure that once enabled,
the ISL6308A will not inadvertently turn off unless the
bias voltage drops substantially (see “Electrical
Specifications” table on page 5).
ISL6308A INTERNAL CIRCUIT EXTERNAL CIRCUIT
VCC
POR
CIRCUIT
PVCC1
+12V
ENABLE
COMPARATOR
+
-
10.7kΩ
ENLL
1.40kΩ
0.66V
SOFT-START
AND
FAULT LOGIC
FIGURE 11. POWER SEQUENCING USING THRESHOLD-
SENSITIVE ENABLE (ENLL) FUNCTION
2. The voltage on ENLL must be above 0.66V. The EN input
allows for power sequencing between the controller bias
voltage and another voltage rail. The enable comparator
holds the ISL6308A in shutdown until the voltage at ENLL
rises above 0.66V. The enable comparator has 100mV of
hysteresis to prevent bounce.
3. The driver bias voltage applied at the PVCC pins must
reach the internal power-on reset (POR) rising threshold.
In order for the ISL6308A to begin operation, PVCC1 is
the only pin that is required to have a voltage applied that
exceeds POR. However, for 2 or 3-phase operation
PVCC2 and PVCC3 must also exceed the POR
threshold. Hysteresis between the rising and falling
thresholds assure that once enabled, the ISL6308A will
not inadvertently turn off unless the PVCC bias voltage
drops substantially (see “Electrical Specifications” table
on page 5).
When each of these conditions is true, the controller
immediately begins the soft-start sequence.
Soft-Start
During soft-start, the DAC voltage ramps linearly from zero
to the programmed level. The PWM signals remain in the
high-impedance state until the controller detects that the
ramping DAC level has reached the output-voltage level.
This protects the system against the large, negative inductor
currents that would otherwise occur when starting with a
pre-existing charge on the output as the controller attempted
15
FN6669.0
September 9, 2008