English
Language : 

LP3971 Datasheet, PDF (46/57 Pages) National Semiconductor (TI) – POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
LP3971
SNVS432U – JANUARY 2006 – REVISED OCTOBER 2008
www.ti.com
and GND pin.
2. Arrange the components so that the switching current loops curl in the same direction. During the first half of
each cycle, current flows from the input filter capacitor through the converter and inductor to the output filter
capacitor and back through ground, forming a current loop. In the second half of each cycle, current is pulled
up from ground through the converter by the inductor to the output filter capacitor and then back through
ground forming a second current loop. Routing these loops so the current curls in the same direction
prevents magnetic field reversal between the two half-cycles and reduces radiated noise.
3. Connect the ground pins of the converter and filter capacitors together using generous component-side
copper fill as a pseudo-ground plane. Then, connect this to the ground-plane (if one is used) with several
vias. This reduces ground-plane noise by preventing the switching currents from circulating through the
ground plane. It also reduces ground bounce at the converter by giving it a low-impedance ground
connection.
4. Use wide traces between the power components and for power connections to the DC-DC converter circuit.
This reduces voltage errors caused by resistive losses across the traces.
5. Route noise sensitive traces, such as the voltage feedback path, away from noisy traces between the power
components. The voltage feedback trace must remain close to the converter circuit and should be direct but
should be routed opposite to noisy components. This reduces EMI radiated onto the DC-DC converter’s own
voltage feedback trace. A good approach is to route the feedback trace on another layer and to have a
ground plane between the top layer and layer on which the feedback trace is routed. In the same manner for
the adjustable part it is desired to have the feedback dividers on the bottom layer.
6. Place noise sensitive circuitry, such as radio RF blocks, away from the DC-DC converter, CMOS digital
blocks and other noisy circuitry. Interference with noise-sensitive circuitry in the system can be reduced
through distance.
46
Submit Documentation Feedback
Product Folder Links: LP3971
Copyright © 2006–2008, Texas Instruments Incorporated