English
Language : 

TLC320AD50C-I_15 Datasheet, PDF (20/57 Pages) Texas Instruments – SIGMA-DELTA ANALOG INTERFACE CIRCUITS WITH MASTER-SLAVE FUNCTION
Figure 2–6 is a timing diagram of this procedure.
FS
P
S
DIN
Register Write
DOUT
Low 8 Bits (DS0–DS7) are all 0
Figure 2–6. Register 1 Write Operation Timing Diagram
2.1.6 Sigma-Delta ADC
The sigma-delta analog-to-digital converter in the device is a sigma-delta modulator with 64-× oversampling. The
ADC provides high-resolution, low-noise performance using oversampling techniques. Due to the oversampling
employed, only single-pole antialiasing filters are required on the analog inputs.
2.1.7 Decimation Filter
The decimation filters reduce the digital data rate to the sampling rate. This is accomplished by decimating with a ratio
of 1:64. The output of the decimation filter is a 16-bit 2s-complement data word clocking at the sample rate selected
for that particular data channel. The bandwidth of the filter is 0.439 × fsample and scales linearly with the sample rate.
2.1.8 Sigma-Delta DAC
The sigma-delta digital-to-analog converter in the device is a sigma-delta modulator with 256-× oversampling. The
DAC provides high-resolution, low-noise performance using oversampling techniques.
2.1.9 Interpolation Filter
The interpolation filter resamples the digital data at a rate of 256 times the incoming sample rate. The high-speed
data output from the interpolation filter is then used in the sigma-delta DAC. The bandwidth of the filter is 0.439 ×
fsample and scales linearly with the sample rate.
2.1.10 Analog and Digital Loopback
The analog and digital loopbacks provide a means of testing the modem data ADC/DAC channels and can be used
for in-circuit system-level tests. The analog loopback routes the DAC low-pass filter output into the analog input where
it is then converted by the ADC into a digital word. The digital loopback, enabled by setting bit D1 in control 1 register
to 1, routes the ADC output to the DAC input on the device. Analog loopback is enabled by setting bit D3 in control
2 register to 1 (see section 6).
2.1.11 FIR Overflow Flag
The decimator FIR filter sets an overflow flag (bit D5) of control 2 register to indicate that the input analog signal has
exceeded the range of the internal decimation filter calculations. Once the FIR overflow flag has been set in the
register, it remains set until the register is read by the user. Reading this value resets the overflow flag.
If FIR overflow occurs, the input signal must be attenuated either by the PGA or some other method.
2–5